刷题首页
题库
高中数学
题干
销售甲、乙两种商品所得利润分别是
P
(万元)和
Q
(万元),它们与投入资金
t
(万元)的关系有经验公式
P
=
,
Q
=
t
.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资
x
(万元).
求:(1)经营甲、乙两种商品的总利润
y
(万元)关于
x
的函数表达式;
(2)总利润
y
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2011-12-23 05:08:47
答案(点此获取答案解析)
同类题1
如图所示,已知边长为8米的正方形钢板有一个角(阴影三角形)被锈蚀,其中
米,
米,为了合理利用这块钢板,将在五边形
内截取一个矩形块
,使点
在边
上.
(1)设
米,
米,将
表示成
的函数,并求出
的取值范围;
(2)求矩形
面积的最大值.
同类题2
近年来大气污染防治工作得到各级部门的重视,某企业现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后当日产量
时,总成本
.
(1)求
的值;
(2)若每吨产品出厂价为59万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
同类题3
某企业生产的一种电器的固定成本(即固定投资)为0.5万元,每生产一台这种电器还需可变成本(即另增加投资)25元,市场对这种电器的年需求量为5百台.已知这种电器的销售收入
R
与销售量
t
的关系可用抛物线表示,如图.
(注:销售量的单位:百台,销售收入与纯收益的单位:万元,生产成本=固定成本+可变成本,精确到1台和0.01万元)
(1)写出销售收入
R
与销售量
t
之间的函数关系式;
(2)若销售收入减去生产成本为纯收益,写出纯收益与销售量的函数关系式,并求销售量是多少时,纯收益最大.
同类题4
如图,建立平面直角坐标系
,
轴在地平面上,
轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程
表示的曲线上,其中
与发射方向有关.炮弹的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)若规定炮弹的射程不小于6千米,设在此条件下炮弹射出的最大高度为
,求
的最小值.
同类题5
某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,应该怎样制定这种商品的销售价格?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题