刷题首页
题库
高中数学
题干
某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价
(元/件)与每天销售量
(件)之间满足如图所示的关系.
(1)求出
与
之间的函数关系式;
(2)写出每天的利润
与销售单价
之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?
上一题
下一题
0.99难度 解答题 更新时间:2019-11-17 02:39:29
答案(点此获取答案解析)
同类题1
有
长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,则这块菜地面积的最大值为_____
.
同类题2
据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本
(万元)可以看成月产量
(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本
(万元)关于月产量
(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?
同类题3
某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲
万件并全部销售完,每一万件的销售收入为
万元,且
(
),该公司在电饭煲的生产中所获年利润为
(万元),(注:利润=销售收入-成本)
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式,并求年利润的最大值;
(2)为了让年利润
不低于2360万元,求年产量
的取值范围.
同类题4
某水果店购进某种水果的成本为
,经过市场调研发现,这种水果在未来30天的销售单价
与时间
之间的函数关系式为
,销售量
与时间
的函数关系式为
。
(Ⅰ)该水果店哪一天的销售利润最大?最大利润是多少?
(Ⅱ)为响应政府“精准扶贫”号召,该店决定每销售
水果就捐赠
元给“精准扶贫”对象.欲使捐赠后不亏损,且利润随时间
的增大而增大,求捐赠额
的值。
同类题5
已知长为4,宽为3的矩形,若长增加
x
,宽减少
,则面积最大,此时
x
=__________,面积
S
=__________.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
函数