刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数.
(1)用定义证明在上是减少的;
(2)作出函数在的图像,并写出函数在时的最大值与最小值.
上一题 下一题 0.99难度 解答题 更新时间:2017-10-18 06:38:13

答案(点此获取答案解析)

同类题1

设函数对于任意,都有,且时,.
(1)判断的单调性,并用定义法证明;
(2)若关于的方程在内有两个不同的实数根,求实数的取值范围.

同类题2

设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f()=1,当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x的取值范围.

同类题3

对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数,使其值域为,则称函数是函数的“渐近函数”.
(1)求证:函数不是函数的“渐近函数”;
(2)判断函数是不是函数,的“渐近函数”,并说明理由;
(3)若函数,,,求证:是函数的“渐近函数”充要条件是.

同类题4

下列函数中既是奇函数,又在区间内是增函数的为()
A.
B.且
C.
D.

同类题5

设函数f (x)=x(2x-),则f (x)
A.为奇函数,在R上是减函数B.为奇函数,在R上是增函数
C.为偶函数,在(-∞,0)上是减函数D.为偶函数,在(-∞,0)上是增函数
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)