- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 求加权平均数
- 已知一组数据的加权平均数,求未知数据的值
- 运用加权平均数做决策
- 出错情况下的平均数问题
- 观察、猜想与证明
- 实践与应用(暂存)
我国是世界上严重缺水的国家之一为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:
),并将调查结果绘成了如下的条形统计图:

(1)求这10个样本数据的平均数、众数和中位数;
(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过
的约有多少户?


(1)求这10个样本数据的平均数、众数和中位数;
(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过






参赛者 | 推荐语 | 读书心得 | 读书讲座 |
甲 | ![]() | ![]() | ![]() |
乙 | ![]() | ![]() | ![]() |
(1)若将三项成绩的平均分作为参赛选手的综合成绩,则甲、乙二人谁最有可能获得大赛一等奖?请通过计算说明理由.
(2)若“推荐语”“读书心得”“读书讲座”的成绩按

老师在计算学生每学期的总成绩时,是把平时成绩和考试成绩按如图所示的比例计算.如果一个学生的平时成绩为70分,考试成绩为90分,那么他的学期总评成绩应为( )


A.70分 ![]() | B.90分 | C.82分 ![]() | D.80分 |
小明参加了某电视台招聘记者的三项素质测试,成绩如下:采访写作70分,计算机操作60分,创意设计88分,如果采访写作、计算机操作和创意设计的成绩按4:1:3计算,则他的素质测试平均成绩为________ 分.
某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.
甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:

根据以上信息,请解答下面的问题;
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).

根据以上信息,请解答下面的问题;
选手 | A平均数 | 中位数 | 众数 | 方差 |
甲 | a | 8 | 8 | c |
乙 | 7.5 | b | 6和9 | 2.65 |
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).
在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.

(1)这50名同学捐款的众数为 元,中位数为 元;
(2)求这50名同学捐款的平均数;
(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.

(1)这50名同学捐款的众数为 元,中位数为 元;
(2)求这50名同学捐款的平均数;
(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.
在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是( )
A.84分 | B.87.6分 | C.88分 | D.88.5分 |
评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试90分,作业95分,课堂参与92分,则他的数学期末成绩为_____.