- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 求扇形统计图的某项数目
- 求扇形统计图的圆心角
- 由扇形统计图求某项的百分比
- 由扇形统计图求总量
- 由扇形统计图推断结论
- + 条形统计图和扇形统计图信息关联
- 观察、猜想与证明
- 实践与应用(暂存)
某学校为了加强学生的安全意识,组织学生观看了纪实片《孩子,请不要私自下水》,并对部分学生进行调查.根据下面两幅不完整的统计图可以求出,在这次调查中被调查的学生有( )



A.![]() | B.![]() | C.![]() | D.![]() |
某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:

(1)该校毕业生中男生有________人,女生有________人;
(2)扇形统计图中a=________,b=________;
(3)补全条形统计图(不必写出计算过程).

(1)该校毕业生中男生有________人,女生有________人;
(2)扇形统计图中a=________,b=________;
(3)补全条形统计图(不必写出计算过程).
某校根据课程设置要求,开设了数学类拓展性课程.为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:

(1)求
的值;
(2)补全条形统计图.

(1)求

(2)补全条形统计图.
为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:

(1)请将条形统计图补充完整;
(2)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(3)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表法或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.

(1)请将条形统计图补充完整;
(2)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(3)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表法或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
老师随机抽查了本学期学生读课外书册数的情况,绘制成条形统计图(如图1)和不完整的扇形图(如图2),其中条形统计图被墨迹遮盖了一部分.
(1)求条形统计图中被遮盖的数,并写出册数的中位数;
(2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没有改变,则最多补查了____人.
(1)求条形统计图中被遮盖的数,并写出册数的中位数;
(2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没有改变,则最多补查了____人.

重庆,别称“山城”、“雾都”,旅游资源丰富,自然人文旅游景点独具特点.近年来,重庆以其独特“3D魔幻”般的城市魅力吸引了众多海内外游客,成为名副其实的旅游打卡网红城市.某中学想了解该校九年级1200名学生对重庆自然人文旅游景点的了解情况,从九(1)、九(2)班分别抽取了30名同学进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:
a.测试成绩分成5组,其中A组:50<x≤60,B组:60<x≤70,C组:70<x≤80,D组:80<x≤90,E组:90<x≤100.测试成绩统计图如下:

b.九(2)班D组的测试成绩分别是:81、82、82、83、84、85、86、87、88、89、89、90、90、90.
c.九(1)(2)班测试成绩的平均数、中位数、众数如下:
根据以上信息,回答下列问题:
(1)根据题意,直接写出m,n的值:m= ,n= ;九(2)班测试成绩扇形统计图中A组的圆心角α= °;
(2)在此次测试中,你认为 班的学生对重庆自然人文景点更了解(填“九(1)”或“九(2)”),请说明理由(一条理由即可): ;
(3)假设该校九年级学生都参加此次测试,测试成绩大于90分为优秀,请估计该校九年级对重庆自然人文景点的了解达到优秀的人数.
a.测试成绩分成5组,其中A组:50<x≤60,B组:60<x≤70,C组:70<x≤80,D组:80<x≤90,E组:90<x≤100.测试成绩统计图如下:

b.九(2)班D组的测试成绩分别是:81、82、82、83、84、85、86、87、88、89、89、90、90、90.
c.九(1)(2)班测试成绩的平均数、中位数、众数如下:
课程 | 平均数 | 中位数 | 众数 |
九(1) | 84.2 | 84 | 89 |
九(2) | 84.6 | π | 90 |
根据以上信息,回答下列问题:
(1)根据题意,直接写出m,n的值:m= ,n= ;九(2)班测试成绩扇形统计图中A组的圆心角α= °;
(2)在此次测试中,你认为 班的学生对重庆自然人文景点更了解(填“九(1)”或“九(2)”),请说明理由(一条理由即可): ;
(3)假设该校九年级学生都参加此次测试,测试成绩大于90分为优秀,请估计该校九年级对重庆自然人文景点的了解达到优秀的人数.
良好行为习惯的养成,是中学生成长重要内容之一.某中学为了了解学生良好行为习惯养成的情况,该校七年级数学兴趣小组在校内随机抽取了部分同学进行调查评分,然后按各人得分高低分成“优秀”、“良好”、“一般”、“较差”四个等级,并绘制了如下两幅统计图(不完整):

请你根据图中提供的信息,完成下列问题:
(1)图1中“优秀”部分所对应的圆心角为 .
(2)在如图2中,将“良好”部分的条形图补充完整;
(3)这次调查,良好行为习惯的养成“较差”人数占被调查人数的百分率为 .

请你根据图中提供的信息,完成下列问题:
(1)图1中“优秀”部分所对应的圆心角为 .
(2)在如图2中,将“良好”部分的条形图补充完整;
(3)这次调查,良好行为习惯的养成“较差”人数占被调查人数的百分率为 .
某校开展了“文明城市”活动周,活动周设置了“
:文明礼仪,
:生态环境,
:交通安全,
:卫生保洁”四个主题活动,每个学生限选一个主题参与,为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下图所示的不完整的条形统计图和扇形统计图.

(1)本次随机调查的学生人数是_______人;
(2)补全条形统计图;
(3)在扇形统计图中,“
”主题对应扇形的圆心角为________度.





(1)本次随机调查的学生人数是_______人;
(2)补全条形统计图;
(3)在扇形统计图中,“

小聪对本班全体同学的兴趣爱好进行了一次调查,根据采集到的数据绘制了如图的统计图,请你根据图中提供的信息解答下列问题:

(1)该班学生共多少人;
(2)在图1中,请你将统计图补充完整;
(3)求爱好“书画”的学生数占该班学生数的百分比;
(4)在图2中,“音乐”部分所对应的圆心角度数是多少.

(1)该班学生共多少人;
(2)在图1中,请你将统计图补充完整;
(3)求爱好“书画”的学生数占该班学生数的百分比;
(4)在图2中,“音乐”部分所对应的圆心角度数是多少.
为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:

(1)求这次被调查的学生人数;
(2)请将条形统计图补充完整;
(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.
A.数学思维, | B.文学鉴赏, | C.红船课程, | D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题: |

(1)求这次被调查的学生人数;
(2)请将条形统计图补充完整;
(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.