- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 求扇形统计图的某项数目
- 求扇形统计图的圆心角
- 由扇形统计图求某项的百分比
- 由扇形统计图求总量
- 由扇形统计图推断结论
- + 条形统计图和扇形统计图信息关联
- 观察、猜想与证明
- 实践与应用(暂存)
肥西素有“淮军故里、改革首县、花木之乡”之美誉,现就肥西以下五个旅游景点进行调查,


(1)本次接受调查的总人数为______人,统计表中m=______,n=______.
(2)补全条形统计图.
(3)若把条形统计图改为扇形统计图,则景点“紫蓬山国家森林公园”、“小井庄”、“刘铭传故居”所在扇形的圆心角度数分别是__________、___________、___________
A.“官亭林海”, | B.“三河古镇”, | C.“紫蓬山国家森林公园”, | D.“小井庄”, | E.“刘铭传故居”,为了解学生最喜欢哪一个景点(每人只选取一种),随机抽取了部分学生进行调查,将调查结果绘制成如下不完整的统计表和统计图.根据以上信息解答下列问题: |


(1)本次接受调查的总人数为______人,统计表中m=______,n=______.
(2)补全条形统计图.
(3)若把条形统计图改为扇形统计图,则景点“紫蓬山国家森林公园”、“小井庄”、“刘铭传故居”所在扇形的圆心角度数分别是__________、___________、___________
某校组织了主题为“我是青奥志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按
,
,
,
四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:

(1)求一共抽取了多少份作品?
(2)此次抽取的作品中等级为
的作品有 份,并补全条形统计图;
(3)扇形统计图中等级为
的扇形圆心角的度数为 ;
(4)若该校共征集到 800 份作品,请估计等级为
的作品约有多少份?





(1)求一共抽取了多少份作品?
(2)此次抽取的作品中等级为

(3)扇形统计图中等级为

(4)若该校共征集到 800 份作品,请估计等级为

某市教育行政部门为了解初三学生每学期参加综合实践活动的情况,随机抽样调查了某校初三学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:


(1)该校初三学生总数为 人;
(2)分别求出活动时间为5天、7天的学生人数为 、 ,并补全频数分布直方图;
(3)扇形统计图中“活动时间为5天”的扇形所对圆心角的度数是 ;
(4)在这次抽样调查中,众数和中位数分别是 、 ;
(5)如果该市共有初三学生96000人,请你估计“活动时间不少于5天”的大约有多少人?


(1)该校初三学生总数为 人;
(2)分别求出活动时间为5天、7天的学生人数为 、 ,并补全频数分布直方图;
(3)扇形统计图中“活动时间为5天”的扇形所对圆心角的度数是 ;
(4)在这次抽样调查中,众数和中位数分别是 、 ;
(5)如果该市共有初三学生96000人,请你估计“活动时间不少于5天”的大约有多少人?
某校为了了解本校七年级学生课外阅读的爱好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍)如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:

(1)这次活动一共调查了多少名学生?
(2)求扇形统计图中“其它”中的扇形圆心角的度数.
(3)补全条形统计图.

(1)这次活动一共调查了多少名学生?
(2)求扇形统计图中“其它”中的扇形圆心角的度数.
(3)补全条形统计图.
垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宜传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,将获得的数据整理绘制成如下两幅不完整的统计图.(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其它垃圾)

根据统计图提供的信息,解答下列问题:
(1)在这次抽样调查中,一共有 吨的生活垃圾;
(2)请将条形统计图补充完整;
(3)扇形统计图中,B所对应的百分比是 ,D所对应的圆心角度数是 ;
(4)假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,请估计每月产生的有害垃圾多少吨?

根据统计图提供的信息,解答下列问题:
(1)在这次抽样调查中,一共有 吨的生活垃圾;
(2)请将条形统计图补充完整;
(3)扇形统计图中,B所对应的百分比是 ,D所对应的圆心角度数是 ;
(4)假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,请估计每月产生的有害垃圾多少吨?
为了迎接
年高中招生考试,简阳市某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:

(1)在这次调查中,被抽取的学生的总人数为多少?
(2)请将表示成绩类别为“中”的条形统计图补充完整:
(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是__________________:
(4)学校九年级共有
人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?


(1)在这次调查中,被抽取的学生的总人数为多少?
(2)请将表示成绩类别为“中”的条形统计图补充完整:
(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是__________________:
(4)学校九年级共有

黎托社区在创建全国卫生城市的活动中,随机检查了本社区部分住户10月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(
.小于5天;
.5天;
.6天;
.7天).

(1)扇形统计图
部分所对应的圆心角的度数是______.
(2)12月份雨花区将举行一场各社区之间“垃圾分类”知识抢答赛,黎托社区准备从甲、乙、丙、丁四户家庭以抽签的形式选取两户家庭参赛,求甲、丙两户家庭恰好被抽中的概率.





(1)扇形统计图

(2)12月份雨花区将举行一场各社区之间“垃圾分类”知识抢答赛,黎托社区准备从甲、乙、丙、丁四户家庭以抽签的形式选取两户家庭参赛,求甲、丙两户家庭恰好被抽中的概率.
2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:
(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图1)补充完整;

(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;

(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图1)补充完整;

(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;

(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:
表示“很喜欢”,
表示“喜欢”,
表示“一般”,
表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:
(1)这次共抽取_________名学生进行统计调查,扇形统计图中,
类所对应的扇形圆心角的大小为__________
(2)将条形统计图补充完整
(3)该校共有1500名学生,估计该校表示“喜欢”的
类的学生大约有多少人?
各类学生人数条形统计图各类学生人数扇形统计图





(1)这次共抽取_________名学生进行统计调查,扇形统计图中,

(2)将条形统计图补充完整
(3)该校共有1500名学生,估计该校表示“喜欢”的

各类学生人数条形统计图各类学生人数扇形统计图


为了弘扬中华优秀传统文化,用好汉字,某中学开展了一次“古诗词”知识竞赛,赛程共分“预赛、复赛和决赛”三个阶段,预赛由各班举行,全员参加,按统一标准评分,统计成绩后绘制成如图1和图2所示的两幅不完整“预赛成绩条形统计图”和“预赛成绩扇形统计图”,预赛前10名选手参加复赛,成绩见“前10名选手成绩统计表”(采用百分制记分,得分都为60分以上的整数).
前10名选手成绩统计表
(1)求该中学学生的总人数,并将图1补充完整;
(2)在图2中,求“90.5~100.5分数段人数”的圆心角度数;
(3)预赛前10名选手参加复赛,成绩见“前10名选手成绩统计表”,若按预赛成绩占40%,复赛成绩占60%的比例计算总成绩,并从中选出3人参加决赛,你认为选哪几号选手去参加决赛,并说明理由.

前10名选手成绩统计表
序号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
预赛成绩(分) | 100 | 92 | 95 | 98 | 94 | 100 | 93 | 96 | 95 | 96 |
复赛成绩(分) | 90 | 80 | 85 | 90 | 80 | 88 | 85 | 90 | 86 | 89 |
总成绩(分) | 94 | 84.8 | 89 | ![]() | 85.6 | 92.8 | 88.2 | ![]() | 89.6 | 91.8 |
(1)求该中学学生的总人数,并将图1补充完整;
(2)在图2中,求“90.5~100.5分数段人数”的圆心角度数;
(3)预赛前10名选手参加复赛,成绩见“前10名选手成绩统计表”,若按预赛成绩占40%,复赛成绩占60%的比例计算总成绩,并从中选出3人参加决赛,你认为选哪几号选手去参加决赛,并说明理由.

