- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 统计调查
- 调查收集数据的过程与方法
- 总体、个体、样本、样本容量
- 统计表
- 扇形统计图
- 折线统计图
- 直方图
- 观察、猜想与证明
- 实践与应用(暂存)
据调查,初中学生课桌椅不合格率达76.7%(不合格是指不能按照学生不同的身高来调节课桌椅的高度),为了解初中生的身高情况,随机抽取了某校初中部分男生、女生进行调查收集数据如下:
男生身高(单位:cm):163 161 160 163 161 162 163 164 163 163
女生身高(单位:cm):164 161 160 161 161 162 160 162 163 162
整理数据:
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,并补全条形统计图;
(2)现有两名身高都为163cm的男生和女生,比较这两名同学分别在男生、女生中的身高情况,并简述理由;
(3)根据相关研究发现,只有身高为161cm的初中生课桌椅是合格的,试估计全校1000名学生中,有多少名学生的课桌椅是合格的?
男生身高(单位:cm):163 161 160 163 161 162 163 164 163 163
女生身高(单位:cm):164 161 160 161 161 162 160 162 163 162
整理数据:
| 160 | 161 | 162 | 163 | 164 |
男生(人) | 1 | 2 | 1 | a | 1 |
女生(人) | 2 | b | 3 | 1 | 1 |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,并补全条形统计图;
(2)现有两名身高都为163cm的男生和女生,比较这两名同学分别在男生、女生中的身高情况,并简述理由;
(3)根据相关研究发现,只有身高为161cm的初中生课桌椅是合格的,试估计全校1000名学生中,有多少名学生的课桌椅是合格的?

学校为了解学生对新闻、体育、动画、娱乐、戏曲类电视节目的喜爱情况,采用抽样的方法在七年级选取了一个班的同学,通过问卷调查,收集数据、整理数据,制作了如下两个整统计图,请根据下面两个不完整的统计图分析数据,回答以下问题:

(1)七年级的这个班共有学生_____人,图中
______,
______,在扇形统计图中,“体育”类电视节目对应的圆心角为:______.
(2)补全条形统计图;
(3)根据抽样调查的结果,估算该校1750名学生中大约有多少人喜欢“娱乐”类电视节目?

(1)七年级的这个班共有学生_____人,图中


(2)补全条形统计图;
(3)根据抽样调查的结果,估算该校1750名学生中大约有多少人喜欢“娱乐”类电视节目?
湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制做了如统计图表:
(1)根据上述统计图表,可得此次采访的人数为 ,m= ,n= .
(2)根据以上信息补全图中的条形统计图.
(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?
关注程度 | 频数 | 频率 |
A.高度关注 | m | 0.4 |
B.一般关注 | 100 | 0.5 |
C.没有关注 | 20 | n |
(1)根据上述统计图表,可得此次采访的人数为 ,m= ,n= .
(2)根据以上信息补全图中的条形统计图.
(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?

小明同学为调查某小学六个年级学生每周的零花钱情况,他在学校中随机抽取了400名学生进行调查统计并制成如下图表,
请根据图表提供的信息解答下列问题:
(1)a =__________,b =__________;
(2)补全频数分布直方图;
(3)若全校共有3000名学生,请你估计该校每周零花钱超过50元的学生有多少名?
| ![]() |
请根据图表提供的信息解答下列问题:
(1)a =__________,b =__________;
(2)补全频数分布直方图;
(3)若全校共有3000名学生,请你估计该校每周零花钱超过50元的学生有多少名?
某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图
(1)该校参加机器人比赛的人数是_____人;“航模”所在扇形的圆心角度数是________°;
(2)补全条形统计图;
(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖.今年全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?
(1)该校参加机器人比赛的人数是_____人;“航模”所在扇形的圆心角度数是________°;
(2)补全条形统计图;
(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖.今年全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?

中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:

请你根据图中的信息,解答下列问题:
(1)补全条形图;
(2)直接写出在这次抽测中,测试成绩的众数和中位数;
(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?

请你根据图中的信息,解答下列问题:
(1)补全条形图;
(2)直接写出在这次抽测中,测试成绩的众数和中位数;
(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
某校组织1000名学生参加“展示我美丽祖国”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:


根据以上图表提供的信息,解答下列问题:
(1)写出表中a、b的数值:a= ,b= ;
(2)补全频数分布表和频数分布直方图;
(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.


根据以上图表提供的信息,解答下列问题:
(1)写出表中a、b的数值:a= ,b= ;
(2)补全频数分布表和频数分布直方图;
(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.
农村中学启动“全国亿万青少年学生体育运动”以来,掀起了青少年参加阳光体育运动的热潮,要求青少年学生每天体育锻炼的时间不少于 1 小时。为了解某县青少年体育运动情况,县教育局对该县学生体育锻炼时间进行了一次抽样调查,结果记录如下:
(1)将下图频数分布表和频 率分布直方图补充完整。

(2)若我县青少年学生有 12 万人,根据以上提供的信息,试估算该县有多少学生末达到活要求。
(1)将下图频数分布表和频 率分布直方图补充完整。

(2)若我县青少年学生有 12 万人,根据以上提供的信息,试估算该县有多少学生末达到活要求。
某校为了解学生参加“经典诵读”的活动情况.该校随机选取部分学生,对他们在三、四月份的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分.
四月份日人均诵读时间的统计表

根据以上信息,解答下列问题:
(1)本次调查的学生人数为______;
(2)图表中的
,
,
,
的值分别为______,______,______,______;
(3)在被调查的学生中,四月份日人均诵读时间在
范围内的人数比三月份在此范围的人数多______人.
四月份日人均诵读时间的统计表
日人均诵读时间![]() | 人数 | 百分比 |
![]() | 6 | |
![]() | 30 | |
![]() | ![]() | ![]() |
![]() | 10 | ![]() |
![]() | ![]() | ![]() |

根据以上信息,解答下列问题:
(1)本次调查的学生人数为______;
(2)图表中的




(3)在被调查的学生中,四月份日人均诵读时间在

某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
整理,描述数据:按如下分数段整理,描述这两组样本数据:
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)
分析数据:两组样本数据的平均数,中位数,众数如下表所示:
得出结论:
(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;
(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)
数据收集 | 10 | 9.5 | 9.5 | 10 | 8 | 9 | 9.5 | 9 | 7 | 10 | 4 | 5.5 | 10 | 7.9 | 9.5 | 10 |
数据分析 | 9.5 | 9 | 8.5 | 8.5 | 10 | 9.5 | 10 | 8 | 6 | 9.5 | 10 | 9.5 | 9 | 8.5 | 9.5 | 6 |
整理,描述数据:按如下分数段整理,描述这两组样本数据:
| ![]() | ![]() | ![]() | ![]() | 10 |
数据收集 | 1 | 1 | 3 | 6 | 5 |
数据分析 | | | | | |
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)
分析数据:两组样本数据的平均数,中位数,众数如下表所示:
项目 | 平均数 | 中位数 | 众数 |
数据收集 | 8.75 | 9.5 | 10 |
数据分析 | 8.81 | 9.25 | 9.5 |
得出结论:
(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;
(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)