- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 统计调查
- 调查收集数据的过程与方法
- 总体、个体、样本、样本容量
- 统计表
- 扇形统计图
- 折线统计图
- 直方图
- 观察、猜想与证明
- 实践与应用(暂存)
为了解九年级学生的体能情况,
学校组织了一次体能测试,并随机选取50名学生的成绩进行统计,得出相关统计表和统计图(其中部分数据不慎丢失,暂用字母m,n表示).
请根据图表所提供的信息回答下列问题:
(1)统计表中的m= ,n= ;并补全频数分布直方图;
(2)若该校九年级有500名学生,请据此估计该校九年级学生体能良好以上的学生有多少人?
(3)根据以往经验,经过一段时间训练后,有60%的学生成绩可以上升一个等级,请估计经过训练后九年级学生体能达标率(成绩在良好及以上)

成绩等级 | 优秀 | 良好 | 合格 | 不合格 |
人数 | m | 30 | n | 5 |
请根据图表所提供的信息回答下列问题:
(1)统计表中的m= ,n= ;并补全频数分布直方图;
(2)若该校九年级有500名学生,请据此估计该校九年级学生体能良好以上的学生有多少人?
(3)根据以往经验,经过一段时间训练后,有60%的学生成绩可以上升一个等级,请估计经过训练后九年级学生体能达标率(成绩在良好及以上)

某校随机调查了若干名家长与中学生对带手机进校园的态度统计图(如图),已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数有_____ .

深圳市某校艺术节期间,开展了“好声音”歌唱比赛,在初赛中,学生处对初赛成绩做了统计分析,绘制成如下频数、频率分布表和频数分布直方图(如图),请你根据图中提供的信息,解答下列问题:
(1)频数、频率分布表中a= ,b= ;
(2)补全频数分布直方图;
(3)初赛成绩在94.5≤x<100.5分的四位同学恰好是七年级、八年级各一位,九年级两位,学生处打算从中
随机挑选两位同学谈一下决赛前的训练,则所选两位同学恰好都是九年级学生的概率为 .
分组 | 频数 | 频率 |
74.5≤x<79.5 | 2 | 0.04 |
79.5≤x<84.5 | a | 0.16 |
84.5≤x<89.5 | 20 | 0.40 |
89.5≤x<94.5 | 16 | 0.32 |
94.5≤x<100.5 | 4 | b |
合计 | 50 | 1 |
(1)频数、频率分布表中a= ,b= ;
(2)补全频数分布直方图;
(3)初赛成绩在94.5≤x<100.5分的四位同学恰好是七年级、八年级各一位,九年级两位,学生处打算从中


实验中学为了了解今年参加中招考试九年级300名学生的体育成绩,特对学生参加课外锻炼的情况进行了摸底,随机对九年级30名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分钟)

(1)补全频数分布表和频数分布直方图.

(2)填空:在这个问题中,总体是___________,样本是_________.
由统计分析得,这组数据的平均数是39.37(分),众数是______,中位数是______.
(3)如果描述该校300名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?
(4)估计实验中学九年级有多少名学生,平均每天参加课外锻炼的时间多于30分钟?

(1)补全频数分布表和频数分布直方图.

(2)填空:在这个问题中,总体是___________,样本是_________.
由统计分析得,这组数据的平均数是39.37(分),众数是______,中位数是______.
(3)如果描述该校300名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?
(4)估计实验中学九年级有多少名学生,平均每天参加课外锻炼的时间多于30分钟?
甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:
(1)补充表格中a,b,c的值,并求甲的方差s2;
(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?
| 平均成绩(环) | 中位数(环) | 众数(环) | 方差 |
甲 | 8 | b | 8 | s2 |
乙 | a | 7 | c | 0.6 |
(1)补充表格中a,b,c的值,并求甲的方差s2;
(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?

阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.
请根据图表中的信息,解答下列问题:
(1)表中的a= ,b= ,中位数落在 组,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?
(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.
组别 | 时间(小时) | 频数(人数) | 频率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合计 | | | 1 |
请根据图表中的信息,解答下列问题:
(1)表中的a= ,b= ,中位数落在 组,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?
(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.

为了了解学生作文考试“书写分”得分情况,李老师随机抽取了10位学生的得分,如图1所示:
(1)利用图1中的信息,补全下表:
(2)李老师把图1转化成图2所示的条形图,请你帮李老师补全条形图;
(3)李老师的学生有60位,请你帮李老师估计得4分以上(含4分)的学生有多少位?
(1)利用图1中的信息,补全下表:
平均数(分) | 中位数(分) | 众数(分) |
_____ | 4 | _____ |
(2)李老师把图1转化成图2所示的条形图,请你帮李老师补全条形图;
(3)李老师的学生有60位,请你帮李老师估计得4分以上(含4分)的学生有多少位?

下列调查中,适合采用全面调查(普查)方式的是()
A.了解天津市中小学学生课外阅读情况 |
B.了解天津市空气质量情况 |
C.了解天津市居民的环保意识情况 |
D.了解七年级一班同学的视力情况 |
某实验中学为了解学生“最适合自己的考前减压方式”,在九年级范围内开展了一次抽样调查,学生必须在四类选项中选择一项,小明根据调查结果绘制了如下尚不完整的统计图.

请根据以上信息解答下列问题:
(1)这次抽样调查中,抽查的学生人数为______人.
(2)请补全条形统计图.
(3)扇形统计图中“其他”所对应扇形圆心角为______度.
(4)若实验中学九年级有700人,请估计采用“听音乐”作为减压方式的人数.

请根据以上信息解答下列问题:
(1)这次抽样调查中,抽查的学生人数为______人.
(2)请补全条形统计图.
(3)扇形统计图中“其他”所对应扇形圆心角为______度.
(4)若实验中学九年级有700人,请估计采用“听音乐”作为减压方式的人数.
某市举行主题为“奔跑吧!2018”的市民健康跑活动.红树林学校的小记者随机采访了40名参赛选手,了解到他们平时每周跑步公里数(单位:km),并根据统计结果绘制出以下频数分布直方图和不完整的表格.
(1)求a= ,n= ;
(2)本次活动有10000人参加比赛,请根据上述调查结果,估算该活动中每周跑步公里数在10≤x<30 内的人数;
(3)应比赛组委会要求,现从每周跑步公里数在40≤x<50 内的4名参赛选手甲,乙,丙,丁中随机抽取2人作为本次活动的形象宣传员,请用画树状图法或列表法求出恰好抽中乙,丙两人的概率.
每周跑步公里数/km | 频数(人数) | 频率 |
0≤x<10 | 2 | 5% |
10≤x<20 | a | m |
20≤x<30 | b | 40% |
30≤x<40 | 10 | 25% |
40≤x<50 | 4 | n |
(1)求a= ,n= ;
(2)本次活动有10000人参加比赛,请根据上述调查结果,估算该活动中每周跑步公里数在10≤x<30 内的人数;
(3)应比赛组委会要求,现从每周跑步公里数在40≤x<50 内的4名参赛选手甲,乙,丙,丁中随机抽取2人作为本次活动的形象宣传员,请用画树状图法或列表法求出恰好抽中乙,丙两人的概率.
