- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 统计调查
- 调查收集数据的过程与方法
- 总体、个体、样本、样本容量
- 统计表
- 扇形统计图
- 折线统计图
- 直方图
- 观察、猜想与证明
- 实践与应用(暂存)
生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A:全部喝完;B:喝剩约
;C:喝剩约一半;D:开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:


(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).
(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?
(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学计算器)



(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).
(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?
(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学计算器)
为了加强课外阅读,开阔视野,我校开展了“书香校园”的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制成如下频数分布表和不完整的频数直方
图:

请根据图表信息回答下列问题:
(1)频数分布表中的a=_______,b=_______;
(2)将频数直方图补充完整;
(3)全校共有学生1200人,若规定阅读时间超过2小时则评为“优秀阅读员”,请估计能评为“优秀阅读员”的学生有多少人?
图:


请根据图表信息回答下列问题:
(1)频数分布表中的a=_______,b=_______;
(2)将频数直方图补充完整;
(3)全校共有学生1200人,若规定阅读时间超过2小时则评为“优秀阅读员”,请估计能评为“优秀阅读员”的学生有多少人?
初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中
名学生每周上网的时间,算得这些学生平均每周上网时间为
小时;小杰从全体
名初二学生名单中随机抽取了
名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为
小时.小丽与小杰整理各自样本数据,如下表所示.
(每组可含最低值,不含最高值)
请根据上述信息,回答下列问题:

你认为哪位学生抽取的样本具有代表性?答:________;估计该校全体初二学生平均每周上网时间为________小时;
根据具有代表性的样本,把上图中的频数分布直方图补画完整;
在具有代表性的样本中,中位数所在的时间段是________小时/周;
专家建议每周上网
小时以上(含
小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?





时间段(小时/周) | 小丽抽样人数 | 小杰抽样人数 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
(每组可含最低值,不含最高值)
请根据上述信息,回答下列问题:







为养成学生课外阅读的习惯,各学校普遍开展了“我的梦.中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:
(1)表中 a= ,b= ;
(2)请补全频数分布直方图中空缺的部分;
(3)样本中,学生日阅读所用时间的中位数落在第 组;
(4)请估计该校七年级学生日阅读量不足 1 小时的人数.

(1)表中 a= ,b= ;
(2)请补全频数分布直方图中空缺的部分;
(3)样本中,学生日阅读所用时间的中位数落在第 组;
(4)请估计该校七年级学生日阅读量不足 1 小时的人数.
组别 | 时间段(小时) | 频数 | 频率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |

我区某中学对学生会倡导的“献爱心”捐款活动进行抽样调查,被调查的学生捐款情况如图所示.

(1)该校共调查了______名学生.
(2)捐款15元以上的学生频率是_______.
(3)若该校共有1800名学生,估计全校学生一共捐款至少多少元?

(1)该校共调查了______名学生.
(2)捐款15元以上的学生频率是_______.
(3)若该校共有1800名学生,估计全校学生一共捐款至少多少元?
为进一步推进青少年毒品预防教育“6•27“工程,切实提高广大青少年识毒、防毒、拒毒的意识和能力,甘肃省各市高度重视全国青少年禁毒知识竞赛活动,强化措施落实,落实工作责任,取得了一定成绩.某市实验中学
针对该校九年级学生的知识竞赛成绩绘制了如下不完整的统计图表.
知识竞赛成绩频数分布表
根据所给信息,解答下列问题.
(1 )a=_____ ,b=_____ .
(2)请求出C组所在扇形统计图中的圆心角的度数.
(3)补全知识竞赛成绩频数分布直方图.
(4)已知该市九年级有3500名学生,请估算全市九年级知识竞赛成绩低于80分的人数

知识竞赛成绩频数分布表
组别 | 成绩(分数) | 人数 |
A | 95≤x<100 | 300 |
B | 90≤x<95 | a |
C | 85≤x<90 | 150 |
D | 80≤x<85 | 200 |
E | 75≤x<80 | b |
根据所给信息,解答下列问题.
(1 )a=
(2)请求出C组所在扇形统计图中的圆心角的度数.
(3)补全知识竞赛成绩频数分布直方图.
(4)已知该市九年级有3500名学生,请估算全市九年级知识竞赛成绩低于80分的人数

今年11月读书节,深圳市统计某学校九年级学生读书状况,制作了两幅不完整的统计图如图所示.
(1)x的值为 ,参加调查的总人数为 人;
(2)补全条形统计图;
(3)若全市有6.7万学生,则看3本及3本书以上的学生约有多少人?
(1)x的值为 ,参加调查的总人数为 人;
(2)补全条形统计图;
(3)若全市有6.7万学生,则看3本及3本书以上的学生约有多少人?

某校对1200名学生的视力进行了检查,其值在5.0~5.1这一小组所占的百分比为25%,则该组的人数为( )
A.150人 | B.300人 | C.600人 | D.900人 |
为了迎接春节,某餐厅推出了四种饺子新款(分别用A、B、C、D表示),请顾客免费试吃后选出最喜欢的品种,结果反馈如下:
C D D A A B A B B B A
C C A A B A A C D C D
通过以上数据,你能获得的信息是( )
C D D A A B A B B B A
C C A A B A A C D C D
通过以上数据,你能获得的信息是( )
A.A款饺子最受欢迎 |
B.B款饺子比C款饺子更受欢迎 |
C.喜欢C、D两款饺子的人数加起来占调查人数的一半 |
D.D款饺子受欢迎程度仅次于C款 |