- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 统计调查
- 调查收集数据的过程与方法
- 总体、个体、样本、样本容量
- 统计表
- 扇形统计图
- 折线统计图
- 直方图
- 观察、猜想与证明
- 实践与应用(暂存)
为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数a的值为_____,所抽查的学生人数为_____.
(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.
(3)求出这部分学生的平均睡眠时间的众数和平均数.
(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数a的值为_____,所抽查的学生人数为_____.
(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.
(3)求出这部分学生的平均睡眠时间的众数和平均数.
(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.

为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如下(未完成),解答下列问题:


(1)若A组的频数比B组小24,求频数分布直方图中的
、
的值;
(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优异的学生有多少名?


(1)若A组的频数比B组小24,求频数分布直方图中的


(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优异的学生有多少名?
为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅________ 只.
某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有 名.
争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分):78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93,整理上面的数据得到频数分布表和频数分布直方图:
回答下列问题:
(1)以上30个数据中,中位数是_____;频数分布表中
____;
_____;
(2)补全频数分布直方图;
(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.
成绩(分) | 频数 |
![]() | 5 |
![]() | ![]() |
![]() | 11 |
![]() | ![]() |
![]() | 2 |
回答下列问题:
(1)以上30个数据中,中位数是_____;频数分布表中


(2)补全频数分布直方图;
(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.

为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
请根据图表信息回答下列问题:
(1)频数分布表中的a= ,b= ;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?
课外阅读时间(单位:小时) | 频数(人数) | 频率 |
0<t≤2 | 2 | 0.04 |
2<t≤4 | 3 | 0.06 |
4<t≤6 | 15 | 0.30 |
6<t≤8 | a | 0.50 |
t>8 | 5 | b |
请根据图表信息回答下列问题:
(1)频数分布表中的a= ,b= ;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?

为参加全县的“我爱古诗词”知识竞赛,徐东所在学校组织了一次古诗词知识测试,徐东从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频数分布表(含频率)和频数分布直方图.请根据频数分布表(含频率)和频数分布直方图,回答下列问题:


(1)分别求出a、b、m、n的值;(写出计算过程)
(2)老师说:“徐东的测试成绩是被抽取的同学成绩的中位数”,那么徐东的测试成绩在什么范围内?
(3)得分在
的为“优秀”,若徐东所在学校共有600名学生,从本次比赛中选取得分为“优秀”的学生参加区赛,请问共有多少名学生被选拔参加区赛?


(1)分别求出a、b、m、n的值;(写出计算过程)
(2)老师说:“徐东的测试成绩是被抽取的同学成绩的中位数”,那么徐东的测试成绩在什么范围内?
(3)得分在

某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:

(1)本次被抽查的书籍有_____册.
(2)补全条形统计图.
(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.

(1)本次被抽查的书籍有_____册.
(2)补全条形统计图.
(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.
2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.


小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:
(1)n =________ ,小明调查了_____ 户居民,并补全图1;
(2)每月每户用水量的中位数落在______ 之间,众数落在_______ 之间;
(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?


小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:
(1)n =
(2)每月每户用水量的中位数落在
(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?