- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 判断三边能否构成直角三角形
- 图形上与已知两点构成直角三角形的点
- 在网格中判断直角三角形
- 利用勾股定理的逆定理求解
- + 勾股定理逆定理的实际应用
- 勾股定理逆定理的拓展问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,四边形ABCD是一个四边形的草坪,AB与AD垂直,通过测量,获得如下数据:AB=12m,BC=14m,AD=5m,CD=3
m,请你测算这块草坪的面积.(结果保留准确值)


如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求这块四边形空地的面积;
(2)若每平方米草皮需要200元,问学校需要投入多少资金买草皮?
(1)求这块四边形空地的面积;
(2)若每平方米草皮需要200元,问学校需要投入多少资金买草皮?

我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)

如图,在
港有甲、乙两艘船,若甲船沿北偏东60°的方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,2小时后甲船到
岛,乙船到
岛,两岛相距34海里,则乙船的航行方向是( )





A.南偏东30° | B.南偏东40° | C.南偏东50° | D.南偏东60° |
如图,在四边形ABCD中,AB=4,AD=3,AB⊥AD ,BC=12.

(1)求BD的长;
(2)当CD为何值时,△BDC是以CD为斜边的直角三角形?
(3)在(2)的条件下,求四边形ABCD的面积.

(1)求BD的长;
(2)当CD为何值时,△BDC是以CD为斜边的直角三角形?
(3)在(2)的条件下,求四边形ABCD的面积.