- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?


A.5 | B.6 | C.7 | D.10 |
如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°。

(1)求∠C的度数;
(2)求∠BED的度数.

(1)求∠C的度数;
(2)求∠BED的度数.
如图所示,DE∥BC,DE分别交AB、AC于D、E两点,CF是BC的延长线.若∠ADE=50°,∠ACF=110°,则∠A=________.


(2014•福鼎市模拟)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线CA2是∠A1CD的角平分线,BA3是A2BD∠的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2013为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90º,点D为AB边上的一点,
(1)试说明:∠EAC=∠B ;(2)若AD=10,BD=24,求DE的长.
(1)试说明:∠EAC=∠B ;(2)若AD=10,BD=24,求DE的长.
