- 数与式
- 方程与不等式
- 函数
- 判断一次函数的增减性
- 根据一次函数增减性求参数
- + 根据一次函数的增减性判断自变量的变化情况
- 比较一次函数值的大小
- 一次函数的规律探究问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某商场计划购进A,B两种新型节能台灯共80盏,这两种台灯的进价、售价如下表所示:

(1)若商场的进货款为3700元,则这两种台灯各购进了多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的2倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

(1)若商场的进货款为3700元,则这两种台灯各购进了多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的2倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
用函数方法研究动点到定点的距离问题.
在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:
S与x的函数关系为S=
并画出图像如图:

借助小明的研究经验,解决下列问题:
(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?
(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.
①随着x增大,y怎样变化?
②当x取何值时,y取最小值,y的最小值是多少?
③当x<1时,证明y随着x增大而变化的规律.
在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:
S与x的函数关系为S=


借助小明的研究经验,解决下列问题:
(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?
(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.
①随着x增大,y怎样变化?
②当x取何值时,y取最小值,y的最小值是多少?
③当x<1时,证明y随着x增大而变化的规律.
已知A(x1,3),B(x2,12)是一次函数y=﹣6x+10的图象上的两点,则下列判断正确的是( )
A.![]() | B.![]() |
C.![]() | D.以上结论都不正确 |
在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1______ y2.(填“>”“<”或“=”)
平面直角坐标系中,过点(-2,3)的直线
经过一、二、三象限,若点(0,
),(-1,
),(
,-1)都在直线
上,则下列判断正确的是()





A.![]() | B.![]() | C.![]() | D.![]() |
若一次函数y=(1﹣2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则m的取值范围是_____.
若一次函数y=kx+b的图象与y轴的负半轴相交,且函数值y随自变量x的增大而增大,则函数y=bx﹣k的图象只能是图中的( )
A.![]() | B.![]() |
C.![]() | D.![]() |