- 数与式
- 方程与不等式
- + 一元一次方程
- 从算式到方程
- 解一元一次方程
- 实际问题与一元一次方程
- 二元一次方程组
- 一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某商场销售一款服装,每件标价150元,若以八折销售,仍可获利30元,则这款服装每件的进价为( )
A.90元 | B.96元 | C.120元 | D.126元 |
幻方的历史很悠久,最早记录可追溯到公元前2200年的“洛书”.如图是中国古代“洛书”的一部分,把“洛书”用今天的数学符号翻译出来(这里是指数出圈数和点数,用数字表示出来)就是一个三阶幻方(注:每行、每列或对角线上的三个数字之和都相等).则右上角的“?”代表的数是( )


A.7 | B.6 | C.2 | D.1 |
已知有两辆玩具车进行30米的直跑道比赛,两车从起点同时出发,A车到达终点时,B车离终点还差12米,A车的平均速度为2.5米/秒.
(1)求B车的平均速度;
(2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;
(3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.
(1)求B车的平均速度;
(2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;
(3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.
某工厂接受了 20 天内生产1200 台GH 型电子产品的总任务。已知每台GH 型产品由 4 个G 型装置和3 个H 型装置配套组成。工厂现有80 名工人,每个工人每天能加工6 个G 型装置或3 个H 型装置。工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好组成GH 型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?
(2)工厂补充 40名新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工 4个G型装置,则补充新工人后每天能配套生产多少产品?补充新工人后20天内能完成总任务吗?
(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?
(2)工厂补充 40名新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工 4个G型装置,则补充新工人后每天能配套生产多少产品?补充新工人后20天内能完成总任务吗?