- 数与式
- 有理数
- 有理数的运算
- 实数
- + 代数式
- 代数式
- 整式
- 整式的加减
- 整式的乘除
- 乘法公式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
我校给某“希望小学”邮寄每册a元的图书1000册,若每册图书的邮费为书价的5%,则共需邮费( )元.
A.5%a | B.5%×1000a | C.1000a(1+5%) | D.50 |
阅读理解:若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数为364”;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数为40”.
(1)30的“至善数”是 ,“明德数”是 .
(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;
(3)若一个两位正整数B的明德数的各位数字之和是B的至善数各位数字之和的一半,求B的最大值.
(1)30的“至善数”是 ,“明德数”是 .
(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;
(3)若一个两位正整数B的明德数的各位数字之和是B的至善数各位数字之和的一半,求B的最大值.
两船从同一港口同时出发反向而行,甲船顺水行驶3小时,乙船逆水行驶2小时,两船在静水中的速度都是60千米/小时,水流的速度是a千米/小时,甲船比乙船多行驶多少千米?
如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有2019个黑棋子,则n=______.

某水果批发市场苹果的价格如下表
(1)①若小明第一次购买15千克需付费 元.②若小明第二次购买26千克需付费 元.
(2)若小强分两次共购买100千克,第一次购买a(a<50)千克,小强两次购买苹果共付费多少元?(用含a的代数式表示).
购买苹果(千克) | 不超过20千克的部分 | 20千克以上但不超过40千克的部分 | 40千克以上的部分 |
每千克的价格 | 6元 | 5元 | 4元 |
(1)①若小明第一次购买15千克需付费 元.②若小明第二次购买26千克需付费 元.
(2)若小强分两次共购买100千克,第一次购买a(a<50)千克,小强两次购买苹果共付费多少元?(用含a的代数式表示).