阅读下面的材料:
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,以此类推,排在第n位的数称为第n项,记为
.所以,数列的一般形式可以写成:
,…,
,…,一般的,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,期中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:
(1)等差数列5,10,15,…的公差d为 ,第5项是 .
(2)如果一个数列
,…,
,…,是等差数列,且公差为d,那么根据定义可得到:
,
,
,…,
,….所以



……由此,请你填空完成等差数列的通项公式:
( )d
(3)求-4039是等差数列-5,-7,-9,…的第几项?并说明理由.
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,以此类推,排在第n位的数称为第n项,记为



(1)等差数列5,10,15,…的公差d为 ,第5项是 .
(2)如果一个数列









……由此,请你填空完成等差数列的通项公式:

(3)求-4039是等差数列-5,-7,-9,…的第几项?并说明理由.
对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定: (a,b)★(c,d)=bc-ad.例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:
(1)有理数对(2,3)★(3,-2)= ;
(2)若有理数对(-3,2x-1)★(1,x+1)=12,则x= ;
(3)当满足等式(-3,2x-1)★(k,x+k)=3+2k的x是整数时,求整数k的值.
(1)有理数对(2,3)★(3,-2)= ;
(2)若有理数对(-3,2x-1)★(1,x+1)=12,则x= ;
(3)当满足等式(-3,2x-1)★(k,x+k)=3+2k的x是整数时,求整数k的值.
在学习《实数》内容时,我们估算带有根号的无理数的近似值时,经常使用“逐步逼近”的方法来实现的.“逐步逼近”是数学思维方法的一种重要形式,主要通过构造“拟对象”、逐步扩充元素、逐步扩充范围、放缩逼近、合力逼近等方式解决问题.
例如:估算
的近似值时,利用“逐步逼近”法可以得出
.请你根据阅读内容回答下列问题:
(1)
介于连续的两个整数
和
,且
,那么
______,
______;
(2)
的整数部分是______,小数部分是______;
(3)已知
的小数部分为
,
的小数部分为
,求
的值.
例如:估算


(1)






(2)

(3)已知




