- 数与式
- 有理数的乘法
- 倒数
- 有理数的乘方
- + 有理数的混合运算
- 有理数加减乘除混合运算
- 有理数加减乘除混合运算的实际应用
- 程序流程图与有理数计算
- 算“24”点
- 含乘方的有理数混合运算
- 计算器——有理数
- 近似数
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读材料,并回答问题
钟表中蕴含着有趣的数学运算,不用负数也可以作减法,例如现在是10点钟,4小时以后是几点钟?虽然
,但在表盘上看到的是2点钟.如果用符号“⊕”表示钟表上的加法,则
.若问2点钟之前4小时是几点钟,就得到钟表上的减法概念,,用符号“㊀”表示钟表上的减法.(注:我们用0点钟代替12点钟)由上述材料可知:
(1)
______,
______;
(2)在有理数运算中,相加得零的两个数互为相反数,如果在钟表运算中沿用这个概念,则5的相反数是______,举例说明有理数减法法则:减去一个数等于加上这个数的相反数,在钟表运算中是否仍然成立;
(3)规定在钟表运算中也有
,对于钟表上的任意数字
,
,
,若
,判断
是否一定成立,若一定成立,说明理由;若不一定成立,写出一组反例,并结合反例加以说明.
钟表中蕴含着有趣的数学运算,不用负数也可以作减法,例如现在是10点钟,4小时以后是几点钟?虽然


(1)


(2)在有理数运算中,相加得零的两个数互为相反数,如果在钟表运算中沿用这个概念,则5的相反数是______,举例说明有理数减法法则:减去一个数等于加上这个数的相反数,在钟表运算中是否仍然成立;
(3)规定在钟表运算中也有






某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:

原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:
(1)初一(2)班有多少人?
(2)你作为组织者如何购票最省钱?比原计划省多少钱?

原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:
(1)初一(2)班有多少人?
(2)你作为组织者如何购票最省钱?比原计划省多少钱?
如图,这是一个运算的流程图,输入正整数x的值,按流程图进行操作并输出y的值.如果输出
,那么输入的x的值为_____________.

