- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么﹣60元表示( )
A.收入60元 | B.收入40元 | C.支出60元 | D.支出40元 |
下列说法,其中正确的个数为( )
①正数和负数统称为有理数;
②一个有理数不是整数就是分数;
③有最小的负数,没有最大的正数;
④符号相反的两个数互为相反数;
⑤﹣a一定在原点的左边.
①正数和负数统称为有理数;
②一个有理数不是整数就是分数;
③有最小的负数,没有最大的正数;
④符号相反的两个数互为相反数;
⑤﹣a一定在原点的左边.
A.1个 | B.2个 | C.3个 | D.4个 |
达里湖水系近3年的水量进出大致如下:(“+”表示进,“﹣”表示出,单位:亿立方厘米)
+18,﹣15,+12,﹣17,+16,﹣11.
(1)最近3年,达里湖水系的水量总体是增加还是减少了?
(2)3年前,达里湖水系总水量是118亿立方厘米,那么现在的总水量是多少亿立方厘米?
(3)若水量的进出都需要费用为每亿立方厘米0.3万元,那么这三年的水量进出共需要多少费用?
+18,﹣15,+12,﹣17,+16,﹣11.
(1)最近3年,达里湖水系的水量总体是增加还是减少了?
(2)3年前,达里湖水系总水量是118亿立方厘米,那么现在的总水量是多少亿立方厘米?
(3)若水量的进出都需要费用为每亿立方厘米0.3万元,那么这三年的水量进出共需要多少费用?
我们是这样研究一个数绝对值的性质的:当a>0时,如a =6,则|a|=|6|=6,此时a的绝对值是它本身;当a=0时,|a|=0,此时a的绝对值是零;当a<0时,如a=-6,则|a|=|-6|=6,此时a的绝对值是它的相反数.这种分析问题的方法所体现的数学思想是( )
A.转化思想 | B.分类思想 | C.数形结合思想 | D.公理化思想 |
在数轴上表示有理数a,b,c的点如图所示.若ac<0,a+b<0,则一定成立的是( )


A.a<0,c<0 | B.ab<0 | C.b+c<0 | D.|a|>|b| |