1.单选题- (共10题)
9.
已知某种商品的广告费支出
(单位:万元)与销售额
(单位:万元)之间有如表对应数据根据表中数据可得回归方程
,其中
,据此估计,当投入6万元广告费时,销售额约为( )万元




![]() | 1 | 2 | 3 | 4 | 5 |
![]() | 10 | 15 | 30 | 45 | 50 |
A.60 | B.63 | C.65 | D.69 |
10.
《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
3.解答题- (共6题)
17.
如图,在四棱锥P-ABCD中,底面ABCD是正方形,且
,平面PCD⊥平面ABCD,
,点E为线段PC的中点,点F是线段AB上的一个动点.

(Ⅰ)求证:平面
平面PBC;
(Ⅱ)设二面角
的平面角为
,试判断在线段AB上是否存在这样的点F,使得
,若存在,求出
的值;若不存在,请说明理由.



(Ⅰ)求证:平面

(Ⅱ)设二面角




18.
已知椭圆
的离心率为
,焦点分别为
,点P是椭圆C上的点,
面积的最大值是2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线
与椭圆C交于M,N两点,点D是椭圆C上的点,O是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.




(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线



19.
随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车.为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成
列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
①求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为X,求X的分布列及数学期望.
附表及公式:

每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成

(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
①求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为X,求X的分布列及数学期望.
附表及公式:


| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20