1.单选题- (共2题)
2.填空题- (共9题)
3.解答题- (共4题)
14.
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
.
(1)若椭圆
,判断
与
是否相似?如果相似,求出
与
的相似比;如果不相似,请说明理由;
(2)写出与椭圆
相似且焦点在
轴上、短半轴长为
的椭圆
的标准方程;若在椭圆
上存在两点
、
关于直线
对称,求实数
的取值范围;
(3)如图:直线
与两个“相似椭圆”
和
分别交于点
和点
,试在椭圆
和椭圆
上分别作出点
和点
(非椭圆顶点),使
和
组成以
为相似比的两个相似三角形,写出具体作法.(不必证明)

(1)若椭圆





(2)写出与椭圆









(3)如图:直线













试卷分析
-
【1】题量占比
单选题:(2道)
填空题:(9道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:15