1.选择题- (共5题)
2.填空题- (共13题)
3.解答题- (共9题)
20.
某小区有一块三角形空地,如图△ABC,其中AC=180米,BC=90米,∠C=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△ABC内的P点处有一服务站(其大小可忽略不计),开发商打算在AC边上选一点D,然后过点P和点D画一分界线与边AB相交于点E,在△ADE区域内绿化,在四边形BCDE区域内修建运动场所. 现已知点P处的服务站与AC距离为10米,与BC距离为100米. 设
米,试问
取何值时,运动场所面积最大?



25.
已知圆
与椭圆
相交于点M(0,1),N(0,-1),且椭圆的离心率为
.

(1)求
的值和椭圆C的方程;
(2)过点M的直线
交圆O和椭圆C分别于A,B两点.
①若
,求直线
的方程;
②设直线NA的斜率为
,直线NB的斜率为
,问:
是否为定值? 如果是,求出定值;如果不是,说明理由.




(1)求

(2)过点M的直线

①若


②设直线NA的斜率为



试卷分析
-
【1】题量占比
选择题:(5道)
填空题:(13道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22