1.单选题- (共11题)
5.
已知函数f(x)满足f(x)=f(π-x),且当x∈
时,f(x)=ex+sin x,则 ( )

A.f(1)<f(2)<f(3) | B.f(2)<f(3)<f(1) | C.f(3)<f(2)<f(1) | D.f(3)<f(1)<f(2) |
9.
我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯
A.1盏 | B.3盏 |
C.5盏 | D.9盏 |
11.
甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )
A.乙可以知道四人的成绩 | B.丁可以知道四人的成绩 |
C.乙、丁可以知道对方的成绩 | D.乙、丁可以知道自己的成绩 |
2.填空题- (共4题)
3.解答题- (共6题)
18.
已知函数f(x)=ex+ax2-e2x.
(1)若曲线y=f(x)在点(2,f(2))处的切线平行于x轴,求函数f(x)的单调区间;
(2)若x>0时,总有f(x)>-e2x,求实数a的取值范围.
20.
(题文)(2017新课标全国II理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:

(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:
,

(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
| 箱产量<50 kg | 箱产量≥50 kg |
旧养殖法 | | |
新养殖法 | | |
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:


试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21