1.单选题- (共5题)
1.
我国古代数学家提出的“中国剩余定理”又称“孙子定理”,它在世界数学史上具有光辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将1到2019这2019个整数中能被5除余1且被7除余2的数按从小到大的顺序排成一列,构成数列
,那么此数列的项数为( )

A.56 | B.57 | C.58 | D.59 |
2.填空题- (共2题)
3.解答题- (共3题)
9.
如题所示的平面图形中,
为矩形,
,
为线段
的中点,点
是以
为圆心,
为直径的半圆上任一点(不与
重合),以
为折痕,将半圆所在平面
折起,使平面
平面
,如图2,
为线段
的中点.

(1)证明:
.
(2)若锐二面角
的大小为
,求二面角
的正弦值.















(1)证明:

(2)若锐二面角



试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(2道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:10