1.单选题- (共6题)
1.
已知α和β是两个不同平面,α∩β=l,
,
是不同的两条直线,且
α,
β,
∥
,那么下列命题正确的是( )






A.l与![]() ![]() | B.l与![]() ![]() |
C.l恰与![]() ![]() | D.l至少与![]() ![]() |
2.
在平面直角坐标系中,如果一个多边形的顶点全是格点(横纵坐标都是整数),那么称该多边形为格点多边形,若△ABC是格点三角形,其中A(0,0),B(4,0),且面积为8,则该三角形边界上的格点个数不可能为( )
A.6 | B.8 | C.10 | D.12 |
2.选择题- (共1题)
3.填空题- (共3题)
4.解答题- (共4题)
11.
设n∈N*且n≥2,集合
(1)写出集合
中的所有元素;
(2)设(
,···,
),(
,···,
)∈
,证明“
=
”的充要条件是
=
(i=1,2,3,···,n);
(3)设集合
={
︳(
,···,
)∈
},求
中所有正数之和.

(1)写出集合

(2)设(









(3)设集合






12.
如图,四棱柱ABCD-
中,地面ABCD为直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB
,∠BA
=60°,AB=A
=2BC=2CD=2

(1)求证:BC⊥A
;
(2)求二面角D-A
-B的余弦值;
(3)在线段D
上是否存在点M,使得CM∥平面DA
?若存在,求
的值;若不存在,请说明理由.





(1)求证:BC⊥A

(2)求二面角D-A

(3)在线段D



13.
已知抛物线C:
=2px过点M(2,2),A,B是抛物线C上不同两点,且AB∥OM(其中O是坐标原点),直线AO与BM交于点P,线段AB的中点为Q
(1)求抛物线C的准线方程;
(2)求证:直线PQ与x轴平行.

(1)求抛物线C的准线方程;
(2)求证:直线PQ与x轴平行.
14.
随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争,吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务,在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.

(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;
(2)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立,记X为选中月平均收入薪资高于8500元的城市的人数,求X的分布列和数学期望E(X);
(3)记图中月平均收入薪资对应数据的方差为
,月平均期望薪资对应数据的方差为
,判断
与
的大小(只需写出结论)

(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;
(2)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立,记X为选中月平均收入薪资高于8500元的城市的人数,求X的分布列和数学期望E(X);
(3)记图中月平均收入薪资对应数据的方差为




试卷分析
-
【1】题量占比
单选题:(6道)
选择题:(1道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:13