1.单选题- (共9题)
4.
《九章算术》中对已知三角形三边长求三角形面积的求法填补了我国传统数学的空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写出公式,即
.现有周长
的
满足
,试用以上给出的公式求得的面积为( )





A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
3.解答题- (共5题)
14.
已知函数
(
,
),
(
),且
在点
处的切线方程为
.
(Ⅰ)求
,
的值;
(Ⅱ)若函数
在区间
内有且仅有一个极值点,求
的取值范围;
(Ⅲ)设
(
)为两曲线
(
),
的交点,且两曲线在交点
处的切线分别为
,
.若取
,试判断当直线
,
与
轴围成等腰三角形时
值的个数并说明理由.








(Ⅰ)求


(Ⅱ)若函数



(Ⅲ)设













16.
如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.

(1)求证:AD⊥平面BFED;
(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.

(1)求证:AD⊥平面BFED;
(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.
17.
如图,抛物线
的焦点为
,取垂直于
轴的直线于抛物线交于不同的两点
,过
作圆心为
的圆,使抛物线上其余点均在圆外,且
.

(1)求抛物线
和圆
的方程;
(2)过点
作倾斜角为
的直线
,且直线
与抛物线
和圆
依次交于
,求
的最小值.








(1)求抛物线


(2)过点








试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18