1.单选题- (共12题)
1.
《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=
(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为
,弦长为
的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中
,
)





A.15 | B.16 | C.17 | D.18 |
7.
某产品在某零售摊位上的零售价x(元)与每天的销售量y(个)统计如下表:
据上表可得回归直线方程
中的
=-4,据此模型预计零售价定为20元时,销售量( )
x | 16 | 17 | 18 | 19 |
y | 50 | 34 | 41 | 31 |
据上表可得回归直线方程


A.51 | B.49 | C.30 | D.29 |
8.
下列说法正确的是( )
A.事件A, B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大 |
B.事件A,B同时发生的概率一定比A, B中恰有一个发生的概率小 |
C.互斥事件不一定是对立事件,对立事件一定是互斥事件 |
D.互斥事件一定是对立事件,对立事件不一定是互斥事件 |
9.
从一群做游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计做游戏的小孩的人数为( )
A.![]() | B.![]() | C.![]() | D.不能估计 |
10.
计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制数的对应关系如下表:
例如,用十六进制表示:E+D=1B,则C×D等于( )
十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
例如,用十六进制表示:E+D=1B,则C×D等于( )
A.5F | B.72 | C.6E | D.9C |
2.填空题- (共4题)
15.
在去年的足球甲A联赛上,一队每场比赛平均失球数是1.6,全年比赛失球个数的标准差为1.2;二队每场比赛平均失球数是2.2,全年失球个数的标准差是0.5.下列说法正确的是__________;
(1)平均说来一队比二队防守技术好;
(2)二队比一队技术水平更稳定;
(3)一队有时表现很差,有时表现又非常好;
(4)二队很少不失球.
(1)平均说来一队比二队防守技术好;
(2)二队比一队技术水平更稳定;
(3)一队有时表现很差,有时表现又非常好;
(4)二队很少不失球.
3.解答题- (共6题)
18.
某险种的基本保费为
(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;
(Ⅲ)求续保人本年度的平均保费估计值.

上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ![]() |
保费 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | ![]() |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;
(Ⅲ)求续保人本年度的平均保费估计值.
19.
农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下(单位:cm):
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21
(1)绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21
(1)绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
20.
如图是某单位职工的月收入情况画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息,解答下列问题.

(1)为了分析职工的收入与年龄、学历等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽取多少人?
(2)试估计样本数据的中位数与平均数.

(1)为了分析职工的收入与年龄、学历等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽取多少人?
(2)试估计样本数据的中位数与平均数.
试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22