1.单选题- (共11题)
10.
如图是某赛季甲、乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是( )


A.甲所得分数的极差为22 |
B.乙所得分数的中位数为18 |
C.两人所得分数的众数相等 |
D.甲所得分数的平均数低于乙所得分数的平均数 |
2.填空题- (共4题)
3.解答题- (共5题)
19.
已知椭圆
的左、右焦点分别为
,且该椭圆过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
作一条斜率不为0的直线
,直线
与椭圆
相交于
两点,记点
关于
轴对称的点为点
,若直线
与
轴相交于点
,求
面积的最大值.



(Ⅰ)求椭圆

(Ⅱ)过点












20.
2019年某地区初中升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试.某学校在九年级上学期开始,就为掌握全年级学生1分钟跳绳情况,抽取了100名学生进行测试,得到下面的频率分布直方图.

(Ⅰ)规定学生1分钟跳绳个数大于等于185为优秀.若在抽取的100名学生中,女生共有50人,男生1分钟跳绳个数大于等于185的有28人.根据已知条件完成下面的
列联表,并根据这100名学生的测试成绩,判断能否有99%的把握认为学生1分钟跳绳成绩是否优秀与性别有关.
(Ⅱ)根据往年经验,该校九年级学生经过训练,正式测试时每人1分钟跳绳个数都有明显进步.假设正式测试时每人1分钟跳绳个数都比九年级上学期开始时增加10个,全年级恰有2000名学生,若所有学生的1分钟跳绳个数
服从正态分布
,用样本数据的平均值和标准差估计
和
,各组数据用中点值代替),估计正式测试时1分钟跳绳个数大于183的人数(结果四舍五入到整数
附:
,其中
.
若随机变量
服从正态分布
,则


(Ⅰ)规定学生1分钟跳绳个数大于等于185为优秀.若在抽取的100名学生中,女生共有50人,男生1分钟跳绳个数大于等于185的有28人.根据已知条件完成下面的

1分钟跳绳成绩 | 优秀 | 不优秀 | 合计 |
男生人数 | 28 | | |
女生人数 | | | 100 |
合计 | | | 100 |
(Ⅱ)根据往年经验,该校九年级学生经过训练,正式测试时每人1分钟跳绳个数都有明显进步.假设正式测试时每人1分钟跳绳个数都比九年级上学期开始时增加10个,全年级恰有2000名学生,若所有学生的1分钟跳绳个数




附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
若随机变量





试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20