1.单选题- (共12题)
11.
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式
中“…”即代表无限次重复,但原式却是个定值,它可以通过方程
,求得
,类似上述过程,则
=( )




A.![]() | B.![]() |
C.![]() | D.![]() |
2.填空题- (共3题)
15.
第七届世界军人运动会将于2019年10月18日至27日在湖北武汉举行。武汉市体育局为了让市民更多地了解军运会,准备组建
四个宣讲小组,开展宣传活动,其中甲、乙、丙、丁四人在不同的四个小组,在被问及参加了哪个宣讲小组时,甲说:“我没有参加
和
小组.”乙说:“我没有参加
和
小组.”丙说:“我也没有参加
和
小组。”丁说:“如果乙不参加
小组,我就不参加
小组.”则参加
小组的人是___.










3.解答题- (共4题)
17.
如图,直三棱柱
的底面边长和侧棱长均为2,
为棱
的中点 .

(1)证明:平面
平面
;
(2)是否存在平行于
的动直线
,分别与棱
交于点
,使得平面
与平面
所成的锐二面角为
,若存在,求出点
到直线
的距离;若不存在,说明理由.




(1)证明:平面


(2)是否存在平行于









18.
已知椭圆
的离心率为
,直线
过椭圆
的右焦点
,过
的直线
交椭圆
于
两点(均异于左、右顶点).
(1)求椭圆
的方程;
(2)已知直线
,
为椭圆
的右顶点. 若直线
交
于点
,直线
交
于点
,试判断
是否为定值,若是,求出定值;若不是,说明理由.









(1)求椭圆

(2)已知直线










试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19