1.单选题- (共10题)
7.
为了检验设备
与设备
的生产效率,研究人员作出统计,得到如下表所示的结果,则( )
附:
参考公式:
,其中
.


| 设备![]() | 设备![]() |
生产出的合格产品 | 48 | 43 |
生产出的不合格产品 | 2 | 7 |
附:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:


A.有90%的把握认为生产的产品质量与设备的选择具有相关性 |
B.没有![]() |
C.可以在犯错误的概率不超过0.01的前提下认为生产的产品质量与设备的选择具有相关性 |
D.不能在犯错误的概率不超过0.1的前提下认为生产的产品质量与设备的选择具有相关性 |
9.
两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位如图所示,则下列座位号码符合要求的应当是( )
窗 口 | 1 | 2 | 过 道 | 3 | 4 | 5 | 窗 口 |
6 | 7 | 8 | 9 | 10 | |||
11 | 12 | 13 | 14 | 15 | |||
… | … | … | … | … |
A.48,49 | B.62,63 | C.75,76 | D.84,85 |
2.选择题- (共3题)
11.
23. ________the warning message, more deaths would have been caused in the flood according to the report from Xinjiang.
23. ________the warning message, more deaths would have been caused in the flood according to the report from Xinjiang.
3.填空题- (共2题)
14.
某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只来测试,直到这4只次品全测出为止,则最后一只次品恰好在第五次测试时被发现,则不同情况种数是______(用数字作答)
15.
我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成
,偶数换成
,得到图②所示的由数
字
和
组成的三角形数表,由上往下数,记第
行各数字的和为
,如
,
,
,
,……,则
______ 


字










4.解答题- (共6题)
18.
某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:

(Ⅰ)求
,
,
的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为
,求
的分布列及数学期望
;
(Ⅲ)某评估机构以指标
(
,其中
表示
的方差)来评估该校安全教育活动的成效.若
,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
等级 | 不合格 | 合格 | ||
得分 | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | ![]() | 24 | ![]() |

(Ⅰ)求



(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为



(Ⅲ)某评估机构以指标





19.
某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如下表所示:
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程
,其中
,
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程



试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(3道)
填空题:(2道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18