1.单选题- (共11题)
6.
某工厂生产的零件外直径(单位:
)服从正态分布
,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为
和
,则可认为( )




A.上午生产情况异常,下午生产情况正常 |
B.上午生产情况正常,下午生产情况异常 |
C.上、下午生产情况均正常 |
D.上、下午生产情况均异常 |
8.
一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机取出两个球,记事件
为“取出的两个球颜色不同”,事件
为“取出一个黄球,一个绿球”,则



A.![]() | B.![]() |
C.![]() | D.![]() |
9.
甲、乙、丙、丁、戊五名同学参加某种技术竞赛,决出了第一名到第五名的五个名次,甲、乙去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军”;对乙说:“你当然不会是最差的”.从组织者的回答分析,这五个人的名次排列的不同情形种数共有( )
A.![]() | B.![]() | C.![]() | D.![]() |
10.
为了弘扬我国优秀传统文化,某中学广播站在春节、元宵节、清明节、端午节、中秋节五个中国传统节日中,随机选取两个节日来讲解其文化内涵,那么春节和端午节恰有一个被选中的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
11.
设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为
.将此结论类比到空间四面体:设四面体
的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r=( )


A.![]() | B.![]() |
C.![]() | D.![]() |
2.填空题- (共4题)
3.解答题- (共5题)
19.
对某种书籍每册的成本费
(元)与印刷册数
(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.

其中
,
.
为了预测印刷
千册时每册的成本费,建立了两个回归模型:
,
.
(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中的模型选择,求
关于
的回归方程,并预测印刷
千册时每册的成本费.
附:对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计公式分别为:
,
.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |

其中


为了预测印刷



(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中的模型选择,求



附:对于一组数据






20.
某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级
名学生中进行了抽样调查,发现喜欢甜品的占
.这
名学生中南方学生共
人。南方学生中有
人不喜欢甜品.
(1)完成下列
列联表:
(2)根据表中数据,问是否有
的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有
名数学系的学生,其中
名不喜欢甜品;有
名物理系的学生,其中
名不喜欢甜品.现从这两个系的学生中,各随机抽取
人,记抽出的
人中不喜欢甜品的人数为
,求
的分布列和数学期望.
附:
.





(1)完成下列

| 喜欢甜品 | 不喜欢甜品 | 合计 |
南方学生 | | | |
北方学生 | | | |
合计 | | | |
(2)根据表中数据,问是否有

(3)已知在被调查的南方学生中有








附:

![]() | 0.15 | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20