1.单选题- (共11题)
2.选择题- (共2题)
3.填空题- (共4题)
4.解答题- (共5题)
20.
已知在四棱锥
中,
,
,E为PC的中点,
,

(1)求证:
(2)若
与面ABCD所成角为
,P在面ABCD射影为O,问是否在BC上存在一点F,使面
与面PAB所成的角为
,若存在,试求点F的位置,不存在,请说明理由.






(1)求证:

(2)若




21.
已知椭圆
的焦点与双曲线
的焦点重合,过椭圆C的右顶点B任作一条直线
,交抛物线
于A,B两点,且
,
(1)试求椭圆C的方程;
(2)过椭圆
的右焦点且垂直于
轴的直线交椭圆
于
两点,M,N是椭圆
上位于直线
两侧的两点.若
,求证:直线MN的斜率
为定值.





(1)试求椭圆C的方程;
(2)过椭圆








22.
某学校为了研究期中考试前学生所做数学模拟试题的套数与考试成绩的关系,统计了五个班做的模拟试卷套数量及期中考试的平均分如下:
(Ⅰ) 若x与y成线性相关,则某班做了8套模拟试题,预计平均分为多少?
(2)期中考试对学生进行奖励,考入年级前200名,获一等奖学金500元;考入年级201—500 名,获二等奖学金300元;考入年级501名以后的学生生将不能获得奖学金.甲、乙两名学生获一等奖学金的概率均为
,获二等奖学金的概率均为
,.若甲、乙两名学生获得每个等级的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X 的分布列及数学期望.
附:
,
.
套(x) | 7 | 6 | 6 | 5 | 6 |
数学平均分(y) | 125 | 120 | 110 | 100 | 115 |
(Ⅰ) 若x与y成线性相关,则某班做了8套模拟试题,预计平均分为多少?
(2)期中考试对学生进行奖励,考入年级前200名,获一等奖学金500元;考入年级201—500 名,获二等奖学金300元;考入年级501名以后的学生生将不能获得奖学金.甲、乙两名学生获一等奖学金的概率均为


附:


试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(2道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20