1.单选题- (共10题)
6.
第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为
,大正方形的面积为
,直角三角形中较小的锐角为
,则
( )






A.![]() | B.![]() | C.![]() | D.![]() |
10.
已知某产品连续4个月的广告费
(千元)与销售额
(万元)(
)满足
,
,若广告费用
和销售额
之间具有线性相关关系,且回归直线方程为
,
,那么广告费用为5千元时,可预测的销售额为( )万元









A.3 | B.3.15 | C.3.5 | D.3.75 |
2.填空题- (共4题)
3.解答题- (共6题)
18.
已知椭圆
,点
在椭圆
上,椭圆
的离心率是
.
(1)求椭圆
的标准方程;
(2)设点
为椭圆长轴的左端点,
为椭圆上异于椭圆
长轴端点的两点,记直线
斜率分别为
,若
,请判断直线
是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.





(1)求椭圆

(2)设点







19.
在平面直角坐标系
中,直线
的参数方程为
(
为参数,
),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,线
的极坐标方程是
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)己知直线
与曲线
交于
、
两点,且
,求实数
的值.









(1)求直线


(2)己知直线






20.
在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分统计结果如下表所示.
(1)由频数分布表可以大致认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求
;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
(ⅱ)每次获赠送的随机话费和对应的概率为:
现有市民甲要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列与数学期望.
附:参考数据与公式
,若
,则
①
;
②
;
③
.
组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以大致认为,此次问卷调查的得分




(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于


(ⅱ)每次获赠送的随机话费和对应的概率为:
赠送的随机话费(单元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
现有市民甲要参加此次问卷调查,记


附:参考数据与公式


①

②

③

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20