1.单选题- (共13题)
8.
如表是降耗技术改造后生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨标准煤)的几组对应数据,根据表中提供的数据,求出
关于
的线性回归方程为
,则表中
的值为( )






![]() | 3 | 4 | 5 | 6 |
![]() | 2.5 | ![]() | 4 | 4.5 |
A.4.5 | B.3.5 | C.3 | D.2.5 |
12.
我校在模块考试中约有1000人参加考试,其数学考试成绩
,统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的
,则此次数学考试成绩不低于110分的学生人数约为( )


A.600 | B.400 |
C.300 | D.200 |
2.填空题- (共4题)
3.解答题- (共5题)
21.
已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
22.
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方
图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料,在犯错误的概率不超过
的前提下,你是否有理由认为“体育迷”与性别有关?
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为
.若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
附:
图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(Ⅰ)根据已知条件完成下面的


| 非体育迷 | 体育迷 | 合计 |
男 | | | |
女 | | 10 | 55 |
合计 | | | |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为




附:

![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
试卷分析
-
【1】题量占比
单选题:(13道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22