1.单选题- (共9题)
1.
对某同学的6次数学测试成绩进行统计,作出的茎叶图如图所示,给出关于该同学数学成绩的以下说法①中位数为84; ②众数为85;③平均数为85; ④极差为12.
其中,正确说法的序号是( )

其中,正确说法的序号是( )

A.①② | B.①③ | C.②④ | D.③④ |
2.
为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )

①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )

A.①③ | B.①④ | C.②③ | D.②④ |
3.
设数据
是郑州市普通职工
个人的年收入,若这
个数据的中位数为
,平均数为
,方差为
,如果再加上世界首富的年收入
,则这
个数据中,下列说法正确的是( )








A.年收入平均数大大增大,中位数一定变大,方差可能不变 |
B.年收入平均数大大增大,中位数可能不变,方差变大 |
C.年收入平均数大大增大,中位数可能不变,方差也不变 |
D.年收入平均数可能不变,中位数可能不变,方差可能不变 |
6.
在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列① ~ ⑤各个选项中,一定符合上述指标的是 ( )
①平均数
; ②标准差
; ③平均数
且标准差
;
④平均数
且极差小于或等于2;⑤众数等于1且极差小于或等于4.
①平均数




④平均数

A.①② | B.③④ | C.③④⑤ | D.④⑤ |
7.
甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则


A.甲的成绩的平均数小于乙的成绩的平均数 |
B.甲的成绩的中位数等于乙的成绩的中位数 |
C.甲的成绩的方差小于乙的成绩的方差 |
D.甲的成绩的极差小于乙的成绩的极差 |
8.
如图,茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )
甲 | 组 | | | 乙组 | |
| 9 | 0 | 9 | | |
x | 2 | 1 | 5 | y | 8 |
7 | 4 | 2 | 4 | | |
A.2,5 | B.5,5 |
C.5,8 | D.8,8 |
2.选择题- (共4题)
3.填空题- (共5题)
14.
某天有10名工人生产同一零部件,生产的件数分别是:15、17、14、10、15、17、17、16、14、12,设其平均数为a,中位数为b,众数为c,则a、b、c从小到大的关系依次是________
18.
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标准为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例的数据,一定符合该标准的是____.(填序号)
①甲地:总体均值为3,中位数为4
②乙地:总体均值为1,总体方差大于0
③丙地:中位数为2,众数为3
④丁地:总体均值为2,总体方差为3
①甲地:总体均值为3,中位数为4
②乙地:总体均值为1,总体方差大于0
③丙地:中位数为2,众数为3
④丁地:总体均值为2,总体方差为3
4.解答题- (共4题)
19.
本小题满分12分)
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
20.
在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为
,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为


21.
对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.

(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合计 | M | 1 |

(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(4道)
填空题:(5道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18