1.单选题- (共8题)
1.
已知函数
的最小正周期为4π,则( )

A.函数f(x)的图象关于原点对称 | B.函数f(x)的图象关于直线![]() |
C.函数f(x)图象上的所有点向右平移![]() | D.函数f(x)在区间(0,π)上单调递增 |
8.
中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为
且
;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为
分,乙和丙最后得分都是
分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )





A.乙有四场比赛获得第三名 |
B.每场比赛第一名得分![]() ![]() |
C.甲可能有一场比赛获得第二名 |
D.丙可能有一场比赛获得第一名 |
2.填空题- (共3题)
3.解答题- (共5题)
14.
如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.

(1)证明:AD⊥BA1;
(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.

(1)证明:AD⊥BA1;
(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.
15.
已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l1上,且满足
(O为坐标原点),记点P的轨迹为

A. (1)求曲线C的方程; (2)已知定点M( ![]() ![]() |
16.
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
![]() 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16