1.单选题- (共10题)
4.
已知函数f(x)=
+cosx的图象关于y轴对称,若函数g(x)恒满足g(k+x)+g(3-x)+2=0,则函数g(x)的图象的对称中心为

A.(1,1) | B.(2,-1) | C.(2,1) | D.(1,-1) |
5.
已知函数f(x)=
cos(3x-
)+sin(3x-
)(|
|<
)的图象关于点(
,0)对称,为了得到函数g(x)=-2cos3x的图象,则需将函数f(x)的图象向右平移( )个单位长度.






A.![]() | B.![]() | C.![]() | D.π |
6.
《九章算术》中第七卷“盈不足”问题中有这样一则:“今有蒲生一日,长三尺;莞生一日,长一尺.蒲生日自半,莞生日自倍.”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日加倍.若第n天(n∈R)蒲、莞的长度相等,则第[n]天蒲长了( )尺.(其中[n]表示不超过n的最大整数)
A.2 | B.![]() | C.1 | D.![]() |
8.
已知双曲线C:
(a>b>0)的两条渐近线与圆O:x2+y2=5交于M,N,P,Q四点,若四边形MNPQ的面积为8,则双曲线C的渐近线方程为

A.y=±![]() | B.y=±![]() | C.y=±![]() | D.y=±![]() |
9.
为了测试小班教学的实践效果,王老师对A、B两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A、B两班学生的平均成绩分别为
,
,A、B两班学生成绩的方差分别为
,
,则观察茎叶图可知






A.![]() ![]() ![]() ![]() | B.![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() ![]() | D.![]() ![]() ![]() ![]() |
2.填空题- (共4题)
11.
已知△ABC中,角A、B、C所对的边分别为a、b、c,S△ABC表示△ABC的面积,且有b(asinA+bsinB)=4sinB·S△ABC+bcsinC,若c=
,则△ABC的外接圆半径为_____________.

14.
如图所示,正六边形ABCDEF中,线段AD与线段BE交于点G,圆O1,O2分别是△ABG与△DEG的内切圆,圆O3,O4分别是四边形BCDG与四边形AGEF的内切圆,则往六边形ABCDEF中任意投掷一点,该点落在图中阴影区域内的概率为_________.

3.解答题- (共6题)
18.
已知四棱锥S—ABCD中,∠SDA=2∠SAD=90°,∠BAD+∠ADC=180°,AB=
CD,点F是线段
SA上靠近点A的一个三等分点,AC与BD相交于

SA上靠近点A的一个三等分点,AC与BD相交于
A.![]() (1)在线段SB上作出点G,使得平面EFG∥平面SCD,请指明点G的具体位置,并用阴影部分表示平面EFG,不必说明平面EFG∥平面SCD的理由; (2)若SA=SB=2,AB=AD=BD= ![]() |
19.
已知抛物线C:x2=2y,过点(-2,4)且斜率为k的直线l与抛物线C相交于M,N两点.
(1)若k=2,求|MN|的值;
(2)记直线l1:x-y=0与直线l2:x+y-4=0的交点为A,求kAM·kAN的值.
(1)若k=2,求|MN|的值;
(2)记直线l1:x-y=0与直线l2:x+y-4=0的交点为A,求kAM·kAN的值.
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20