1.单选题- (共11题)
4.
正方形ABCD和矩形BEFC组成图1,G是EF的中点,BC=2BE.将矩形BEFC沿BC折起,使平面
平面ABCD,连接AG,DF,得到图2,则( )
图1.
图2.

图1.


A.![]() ![]() |
B.![]() ![]() |
C.![]() ![]() |
D.![]() ![]() |
8.
谢尔宾斯基三角形(Sierpinskitriangle)是一种分形几何图形,由波兰数学家谢尔宾斯基在1915年提出,它是一个自相似的例子,其构造方法是:
(1)取一个实心的等边三角形(图1);
(2)沿三边中点的连线,将它分成四个小三角形;
(3)挖去中间的那一个小三角形(图2);
(4)对其余三个小三角形重复(1)(2)(3)(4)(图3).
制作出来的图形如图4,图5,….

若图3(阴影部分)的面积为1,则图5(阴影部分)的面积为( )
(1)取一个实心的等边三角形(图1);
(2)沿三边中点的连线,将它分成四个小三角形;
(3)挖去中间的那一个小三角形(图2);
(4)对其余三个小三角形重复(1)(2)(3)(4)(图3).
制作出来的图形如图4,图5,….

若图3(阴影部分)的面积为1,则图5(阴影部分)的面积为( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共2题)
3.解答题- (共4题)
试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17