1.单选题- (共10题)
1.
已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取
的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为






A.100,8 | B.80,20 | C.100,20 | D.80,8 |
3.
如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为
,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )





A.7 | B.8 |
C.9 | D.10 |
4.
AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是( )


A.这12天中有6天空气质量为“优良” |
B.这12天中空气质量最好的是4月9日 |
C.这12天的AQI指数值的中位数是90 |
D.从4日到9日,空气质量越来越好 |
5.
某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )


A.56 | B.60 | C.140 | D.120 |
6.
在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示:

若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )

若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )
A.3 | B.4 | C.5 | D.6 |
7.
某市正在全面普及数字电视,某住宅区有2万户住户,从中随机抽取200户,调查是否安装数字电视.调查的结果如下表所示,则估计该住宅区已安装数字电视的户数是( )
数字电视 | 老住户 | 新住户 |
已安装 | 30 | 50 |
未安装 | 65 | 55 |
A.5 500 | B.5 000 |
C.8 000 | D.9 500 |
8.
要从容量为102的总体中用系统抽样法随机抽取一个容量为9的样本,则下列叙述正确的是( )
A.将总体分11组,每组间隔为9 |
B.将总体分9组,每组间隔为11 |
C.从总体中剔除3个个体后分11组,每组间隔为9 |
D.从总体中剔除3个个体后分9组,每组间隔为11 |
9.
一名小学生的年龄和身高的数据如下表.由散点图可知,身高y(单位:cm)与年龄x(单位:岁)之间的线性回归方程为
=8.8x+
,预测该学生10岁时的身高约为 ( )


年龄x | 6 | 7 | 8 | 9 |
身高y | 118 | 126 | 136 | 144 |
A.154 cm | B.153 cm | C.152 cm | D.151 cm |
10.
某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表:
则调查小组的总人数为( )
| 相关人员数 | 抽取人数 |
公务员 | 35 | b |
教师 | a | 3 |
自由职业者 | 28 | 4 |
则调查小组的总人数为( )
A.84 | B.12 |
C.81 | D.14 |
2.填空题- (共4题)
12.
为了了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
根据上表可得回归直线方程
x+
,其中
=0.76,
,据此估计,该社区一户居民年收入为15万元家庭的年支出为_____万元.
收入x/万元 | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y/万元 | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
根据上表可得回归直线方程




14.
某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间
内,其频率分布直方图如图所示.

(Ⅰ)直方图中的
_________;
(Ⅱ)在这些购物者中,消费金额在区间
内的购物者的人数为_________.


(Ⅰ)直方图中的

(Ⅱ)在这些购物者中,消费金额在区间

3.解答题- (共6题)
16.
某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.

(1)求直方图中
的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的方法抽取
户居民,则月平均用电量在
的用户中应抽取多少户?









(1)求直方图中

(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为






17.
通过市场调查,得到某种产品的资金投入x(单位:万元)与获得的利润y(单位:万元)的数据,如表所示:
(1)画出数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程
x+
;
(3)现投入资金10万元,求获得利润的估计值为多少万元?
资金投入x | 2 | 3 | 4 | 5 | 6 |
利润y | 2 | 3 | 5 | 6 | 9 |
(1)画出数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程


(3)现投入资金10万元,求获得利润的估计值为多少万元?

19.
“世界睡眠日”定在每年的3月21日,某网站于2017年3月14日到3月20日持续一周网上调查公众日平均睡眠的时间(单位:小时),共有2 000人参加调查,现将数据整理分组后如下表所示.
(1)求出表中空白处的数据,并将表格补充完整.
(2)画出频率分布直方图.
(3)为了对数据进行分析,采用了计算机辅助计算.程序框图如图所示,求输出的S值,并说明S的统计意义.
序号(i) | 分组睡眠时间 | 组中值(mi) | 频数(人数) | 频率(fi) |
1 | [4,5) | 4.5 | 80 | |
2 | [5,6) | 5.5 | 520 | 0.26 |
3 | [6,7) | 6.5 | 600 | 0.30 |
4 | [7,8) | 7.5 | | |
5 | [8,9) | 8.5 | 200 | 0.10 |
6 | [9,10] | 9.5 | 40 | 0.02 |
(1)求出表中空白处的数据,并将表格补充完整.
(2)画出频率分布直方图.
(3)为了对数据进行分析,采用了计算机辅助计算.程序框图如图所示,求输出的S值,并说明S的统计意义.

20.
已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图所示的茎叶图.
(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.
①估计池塘中鱼的质量在3千克以上(含3千克)的条数;
②若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7条,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.

(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.
①估计池塘中鱼的质量在3千克以上(含3千克)的条数;
②若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7条,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.


试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20