2016-2017学年四川成都经济技术开区实验高二理10月考数学卷(带解析)

适用年级:高二
试卷号:600266

试卷类型:月考
试卷考试时间:2017/7/26

1.单选题(共8题)

1.
已知平面α和直线l,则α内至少有一条直线与l(  )
A.异面B.相交C.平行D.垂直
2.
已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为( )
A.B.
C.D.
3.
已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是(   )
A.B.C.D.都不对
4.
对空间中两条不相交的直线,必定存在平面,使得 ( )
A.B.C.D.
5.
下图是一几何体的三视图(单位:cm),则这个几何体的体积为
A.1cm3B.3cm3 C.2cm3D.6cm3
6.
为两条直线,为两个平面,下列四个命题中,正确的命题是(  )
A.若所成的角相等,则
B.若,则
C.若,则
D.若,则
7.
在四边形中,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是(   )
A.平面平面
B.平面平面
C.平面平面
D.平面平面
8.
如图给出了计算的值的一个程序框图,其中空白处应填入
A.
B.
C.
D.

2.选择题(共1题)

9.

下列不是由于地球的公转产生了的是

3.填空题(共2题)

10.
一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为_____厘米.
11.
如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=,且当规定主视图方向垂直平面ABCD时,该几何体的侧视图的面积为.若M、N分别是线段DE、CE上的动点,则AM+MN+NB的最小值为________.

4.解答题(共3题)

12.
一个四棱锥的三视图如图所示.

(1)求证:PA⊥BD;
(2)在线段PD上是否存在一点Q,使二面角Q-AC-D的平面角为30°?若存在,求的值;若不存在,说明理由.
13.
如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).

(1)求证:AP∥平面EFG;
(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;
(3)求三棱锥C-EFG的体积.
14.
如图,四棱锥P-ABCD的底面ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.

(1)求证:BE∥平面PAD;
(2)若AP=2AB,求证:BE⊥平面PCD.
试卷分析
  • 【1】题量占比

    单选题:(8道)

    选择题:(1道)

    填空题:(2道)

    解答题:(3道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:13