1.单选题- (共9题)
7.
点E是正方形ABCD对角线AC上,且EC=2AE,Rt△FEG的两条直角边EF、EG分别交BC、DC于M、N两点,若正方形ABCD的边长为a,则四边形EMCN的面积( )


A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共3题)
12.
如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________

3.解答题- (共9题)
15.
某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成,根据两队每天的工程费用和每天完成的工程量可知,若由两队合做6天可以完成,共需工程费用385200元;若单独完成,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元。
(1)求甲、乙独做各需多少天?
(2)若从节省资金的角度,应该选择哪个工程队?
(1)求甲、乙独做各需多少天?
(2)若从节省资金的角度,应该选择哪个工程队?
16.
在Rt△ABC中,∠B=900,AC=100cm, ∠A=600,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤25)过点D作DF⊥BC于点F,连结DE、EF。
(1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。
(2)当t为何值时,△DEF为直角三角形?请说明理由。
(1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。
(2)当t为何值时,△DEF为直角三角形?请说明理由。

18.
小明九年级上学期的数学成绩如下表:
(1)计算小明这学期的数学平时平均成绩?
(2)如果学期总评成绩是根据如图所示的权重计算,求小明这学期的数学总评成绩?
测试 类别 | 平 时 | 期中 | 期末 | |||
测试1 | 测试2 | 测试4 | 课题学习 | 112 | 110 | |
成绩(分) | 106 | 102 | 115 | 109 |
(1)计算小明这学期的数学平时平均成绩?
(2)如果学期总评成绩是根据如图所示的权重计算,求小明这学期的数学总评成绩?

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(3道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:4
7星难题:0
8星难题:1
9星难题:14