2020届天津市南开中学高三数学开学统练试题

适用年级:高三
试卷号:587355

试卷类型:开学考试
试卷考试时间:2020/2/13

1.单选题(共2题)

1.
已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,EF分别是PAAB的中点,∠CEF=90°,则球O的体积为
A.B.C.D.
2.
已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且为原点),则双曲线的离心率为
A.B.C.2D.

2.填空题(共4题)

3.
在四边形中, , , ,点在线段的延长线上,且,则__________.
4.
,则的最小值为______.
5.
已知直线与圆交于两点,过分别作的垂线与轴交于两点,若,则__________.
6.
展开式中的常数项为________.

3.解答题(共4题)

7.
是等差数列,是等比数列.已知.
(Ⅰ)求的通项公式;
(Ⅱ)设数列满足其中.
(i)求数列的通项公式;
(ii)求.
8.
如图,平面.

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)若二面角的余弦值为,求线段的长.
9.
设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线轴的交点,点轴的负半轴上.若为原点),且,求直线的斜率.
10.
设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
试卷分析
  • 【1】题量占比

    单选题:(2道)

    填空题:(4道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:10