1.单选题- (共7题)
4.
如图△ABC,BD平分∠ABC且与△ABC的外角∠ACE的角平分线交于点D,若∠ABC=m°,∠ACB=n°,求∠D的度数为()


A.90°+![]() ![]() | B.90°-![]() ![]() | C.90°-![]() ![]() | D.不能确定 |
2.填空题- (共3题)
3.解答题- (共6题)
11.
两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B. C. E在同一条直线上,连结DC.

(1)请在图2中找出与△ABE全等的三角形,并给予证明;
(2)证明:DC⊥BE.

(1)请在图2中找出与△ABE全等的三角形,并给予证明;
(2)证明:DC⊥BE.
12.
如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点

(1)若AB=10,则△CDE的周长.
(2)若∠ACB=120°,求∠DCE的度数.
A. |

(1)若AB=10,则△CDE的周长.
(2)若∠ACB=120°,求∠DCE的度数.
14.
如图,已知在△ABC中,AB=AC=12cm,BC=9cm,D为AB中点,设点P在线段BC上以3cm/s的速度由B点向C点运动,点Q在线段CA上由C点向A点运动.

(1)若Q点运动的速度与P点相同,且点P、Q同时出发,经过1秒钟后△BPD与△CQP是否全等,并说明理由;
(2)若点P、Q同时出发,但运动的速度不相同,当Q点的运动速度为多少时,能在运动过程中有△BPD与△CQP全等?

(1)若Q点运动的速度与P点相同,且点P、Q同时出发,经过1秒钟后△BPD与△CQP是否全等,并说明理由;
(2)若点P、Q同时出发,但运动的速度不相同,当Q点的运动速度为多少时,能在运动过程中有△BPD与△CQP全等?
16.
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=B
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=B
A. ∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE. (下面请你完成余下的证明过程) ![]() ![]() (2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由. (3)若将(1)中的“正方形ABCD”改为“正 ![]() |
试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16