1.单选题- (共7题)
4.
2018年10月20日“襄阳马拉松”如期举行,本次活动共设置“全马”、“半马”和“健康跑”三个组别在此次活动中,某公司承担了制作600个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了10个,因此提前5天完成任务根据题意,下列方程正确的是( )
A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
2.填空题- (共2题)
3.解答题- (共7题)
10.
如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形然后按照图②所示拼成一个正方形.

(1)观察图②,请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系: ;
(2)根据上述(1)中得到的等量关系,解决下列问题:已知x+y=6,xy=5,求x﹣y的值.

(1)观察图②,请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系: ;
(2)根据上述(1)中得到的等量关系,解决下列问题:已知x+y=6,xy=5,求x﹣y的值.
12.
为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距离上班地点
,他乘坐公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程的
倍还多
.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的
.
(1)小王用自驾车上班平均每小时行驶多少千米?
(2)上周五,小王上班时先步行了
,然后乘公交车前往,共用
小时到达.求他步行的速度.




(1)小王用自驾车上班平均每小时行驶多少千米?
(2)上周五,小王上班时先步行了


13.
在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.

(1)根据题意,可求得OE= ;
(2)求证:△ADO≌△ECO;
(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?

(1)根据题意,可求得OE= ;
(2)求证:△ADO≌△ECO;
(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?
14.
已知在△ABC中,AC=BC,分别过A,B两点作互相平行的直线AM,BN,过点C的直线分别交直线AM,BN于点D,E.

(1)如图1,若AM⊥AB,求证:CD=CE;
(2)如图2,∠ABC=∠DEB=60°,判断线段AD,DC与BE之间的关系,并说明理由.

(1)如图1,若AM⊥AB,求证:CD=CE;
(2)如图2,∠ABC=∠DEB=60°,判断线段AD,DC与BE之间的关系,并说明理由.
15.
为了发展乡村旅游,某村准备在河道上修一座与河道垂直的桥,如图(1)所示,直线l,m代表河流的两岸河道,且l∥m,点A是某村自助农场的所在地,点B是某村游乐场所在地.

问题1:造桥选址桥准备选在到A,B两地的距离之和刚好为最小的点C处,即在直线l上找一点C,使AC+BC的值为最小.请利用你所学的知识在图(1)中作出点C的位置,并简单说明你所设计方案的原理;
问题2:测量河宽:在测量河道的宽度时施工队在河道南侧的开阔地用以下方法(如图2所示):①作CD⊥l,与河对岸的直线m相交于D;②在直线m上取E,F两点,使得DE=EF=10米;③过点F作m的垂线FG,使得点G与C,E两点在同一直线上;④测量FG的长度为20米.请你确定河道的宽度,并说明理由.

问题1:造桥选址桥准备选在到A,B两地的距离之和刚好为最小的点C处,即在直线l上找一点C,使AC+BC的值为最小.请利用你所学的知识在图(1)中作出点C的位置,并简单说明你所设计方案的原理;
问题2:测量河宽:在测量河道的宽度时施工队在河道南侧的开阔地用以下方法(如图2所示):①作CD⊥l,与河对岸的直线m相交于D;②在直线m上取E,F两点,使得DE=EF=10米;③过点F作m的垂线FG,使得点G与C,E两点在同一直线上;④测量FG的长度为20米.请你确定河道的宽度,并说明理由.
试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(2道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16