1.单选题- (共8题)
2.
如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a-1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的长为( )


A.2 cm | B.2a cm |
C.4a cm | D.(2a-2)cm |
5.
勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,
,
,
,点
都是矩形
的边上,则矩形
的面积为( )








A.![]() | B.![]() | C.![]() | D.![]() |
6.
如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE≌△CBF的是( )
①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF;

①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF;

A.①或③ | B.①或④ | C.②或④ | D.②或③ |
8.
△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的有( )个
①∠A:∠B:∠C=l:2:3;②三边长为a,b,c的值为1,2,
;③三边长为a,b,c的值为
,2,4;④.a2=(c+b)(c﹣b),
①∠A:∠B:∠C=l:2:3;②三边长为a,b,c的值为1,2,


A.0个 | B.1个 | C.2个 | D.3个 |
2.选择题- (共2题)
3.填空题- (共2题)
4.解答题- (共5题)
14.
学校为了解全校
名学生双休日在家最爱选择的电视频道情况,问卷要求每名学生从“新闻,体育,电影,科教,其他”五项中选择其一,随机抽取了部分学生,调查结果绘制成未完成的统计图表如下:
求调查的学生人数及统计图表中
的值;
求选择其他频道在统计图中对应扇形的圆心角的度数;
求全校最爱选择电影频道的学生人数.

频道 | 新闻 | 体育 | 电影 | 科教 | 其他 |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() |





16.
如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于
A.![]() (1)当∠BDA=115°时,∠EDC=____ __,∠DEC=__ ___;点D从B向C运动时,∠BAD逐渐变_______(填“大”或“小”),∠BAD_______∠CDE(填“=”或“>”或“<”). (2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由. |
17.
(问题情境)
课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(初步运用)
如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.
(灵活运用)
如图3,在△ABC中,∠A=90°,D为BC中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.
课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(初步运用)
如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.
(灵活运用)
如图3,在△ABC中,∠A=90°,D为BC中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.
试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(2道)
填空题:(2道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:15