1.单选题- (共3题)
2.填空题- (共4题)
6.
如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第2019次“移位”后,他到达编号为_____的点.

3.解答题- (共5题)
9.
数学课上,小明和小颖对一道应用题进行了合作探究:一列火车匀速行驶,经过一条长为1000米的隧道需要50秒,整列火车完全在隧道里的时间是30秒,求火车的长度.
(1)请补全小明的探究过程:设火车的长度为x米,则从车头进入隧道到车尾离开隧道所走的路程为(1000+x)米,所以这段时间内火车的平均速度为
米/秒;由题意,火车的平均速度还可以表示为 米/秒.再根据火车的平均速度不变,可列方程 ,解方程后可得火车的长度为 米.
(2)小颖认为:也可以通过设火车的平均速度为v米/秒,列出方程解决问题.请按小颖的思路完成探究过程.
(1)请补全小明的探究过程:设火车的长度为x米,则从车头进入隧道到车尾离开隧道所走的路程为(1000+x)米,所以这段时间内火车的平均速度为

(2)小颖认为:也可以通过设火车的平均速度为v米/秒,列出方程解决问题.请按小颖的思路完成探究过程.
10.
观察表格:
根据表格中的规律解答问题:
(1)5条直线两两相交,有 个交点,平面被分成 块;
(2)n条直线两两相交,有 个交点,平面被分成 块;
(3)应用发现的规律解决问题:一张圆饼切10刀(不许重叠),最多可得到 块饼.
![]() | ![]() | ![]() | ![]() |
1条直线 0个交点 平面分成(1+1)块 | 2条直线 1个交点 平面分成(1+1+2)块 | 3条直线 (1+2)个交点 平面分成(1+1+2+3)块 | 4条直线 (1+2+3)个交点 平面分成(1+1+2+3+4)块 |
根据表格中的规律解答问题:
(1)5条直线两两相交,有 个交点,平面被分成 块;
(2)n条直线两两相交,有 个交点,平面被分成 块;
(3)应用发现的规律解决问题:一张圆饼切10刀(不许重叠),最多可得到 块饼.
11.
如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=60°,将一直角三角板的直角顶点放在点O处,一边ON在射线OB上,另一边OM在直线AB的上方.

(1)在图1中,∠COM= 度;
(2)将图1中的三角板绕点O按逆时针方向旋转,使得ON在∠BOC的内部,如图2,若∠NOC=
∠MOA,求∠BON的度数;
(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON恰好平分∠BOC时,旋转的时间是 秒.

(1)在图1中,∠COM= 度;
(2)将图1中的三角板绕点O按逆时针方向旋转,使得ON在∠BOC的内部,如图2,若∠NOC=

(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON恰好平分∠BOC时,旋转的时间是 秒.
试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:12