1.选择题- (共3题)
2.单选题- (共11题)
4.
《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=
(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为
,弦长为
的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中
,
)





A.15 | B.16 | C.17 | D.18 |
8.
某产品在某零售摊位上的零售价x(元)与每天的销售量y(个)统计如下表:
据上表可得回归直线方程
中的
=-4,据此模型预计零售价定为16元时,销售量为( )
x | 16 | 17 | 18 | 19 |
y | 50 | 34 | 41 | 31 |
据上表可得回归直线方程


A.48 | B.45 | C.50 | D.51 |
9.
某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在按
的抽样比用分层抽样的方法抽取样本,则应抽取高一学生人数为

A.8 | B.11 |
C.16 | D.10 |
10.
甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
11.
一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )
A.55.2,3.6 | B.55.2,56.4 |
C.64.8,63.6 | D.64.8,3.6 |
3.填空题- (共4题)
15.
设函数
为区间
上的图像是连续不断的一条曲线,且恒有
,可以用随机模拟方法计算由曲线
及直线
,
,
所围成部分的面积,先产生两组
每组
个,区间
上的均匀随机数
和
,由此得到V个点
。再数出其中满足
的点数
,那么由随机模拟方法可得S的近似值为___________















18.
调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归方程:
=0.234x+0.521.由回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________ 万元.

4.解答题- (共5题)
19.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.
21.
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程
(3)试预测加工10个零件需要多少小时?
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |

(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程

(3)试预测加工10个零件需要多少小时?
22.
某校为了解高三年级学生的数学学习情况,在一次数学考试后随机抽取n名学生的数学成绩,制成如下所示的频率分布表.
(1)求a,b,n的值;
(2)若从第三、四、五组中用分层抽样的方法抽取6名学生,并在这6名学生中随机抽取2名与老师面谈,求第三组中至少有1名学生被抽到与老师面谈的概率.
组号 | 分组 | 频数 | 频率 |
第一组 | [90,100) | 5 | 0.05 |
第二组 | [100,110) | a | 0.35 |
第三组 | [110, 120) | 30 | 0.30 |
第四组 | [120,130) | 20 | b |
第五组 | [130,140] | 10 | 0.10 |
合计 | n | 1.00 |
(1)求a,b,n的值;
(2)若从第三、四、五组中用分层抽样的方法抽取6名学生,并在这6名学生中随机抽取2名与老师面谈,求第三组中至少有1名学生被抽到与老师面谈的概率.
试卷分析
-
【1】题量占比
选择题:(3道)
单选题:(11道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20