1.单选题- (共10题)
1.
给出下列四个命题:
①“若
为
的极值点,则
”的逆命题为真命题;
②“平面向量
,
的夹角是钝角”的充分不必要条件是
③若命题
,则
;
④命题“
,使得
”的否定是:“
均有
”.
其中不正确的个数是( )
①“若



②“平面向量



③若命题


④命题“




其中不正确的个数是( )
A.1 | B.2 | C.3 | D.4 |
5.
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按31天算,记该女子一个月中的第
天所织布的尺数为
,则
的值为( )



A.![]() | B.![]() | C.![]() | D.![]() |
7.
若一个四位数的各位数字相加和为10,则称该数为“完美四位数”,如数字“2017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2017的“完美四位数”有( )个.
A.71 | B.66 | C.59 | D.53 |
2.填空题- (共4题)
12.
已知动点P在棱长为1的正方体
的表面上运动,且线段
,记点P的轨迹长度为
.给出以下四个命题:
①
; ②
; ③
④函数
在
上是增函数,
在
上是减函数.
其中为真命题的是___________ (写出所有真命题的序号)



①



④函数




其中为真命题的是
3.解答题- (共4题)
18.
继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相南昌市,一款共享汽车在南昌提供的车型是“吉利”.每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每次租用共享汽车上、下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为
分钟.
(1)若李先生上、下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设
是4次使用共享汽车中最优选择的次数,求
的分布列和期望.
(2)若李先生每天上、下班均使用共享汽车,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).
时间(分钟) | ![]() | ![]() | ![]() | ![]() | ![]() |
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为

(1)若李先生上、下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设


(2)若李先生每天上、下班均使用共享汽车,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18