1.单选题- (共11题)
2.填空题- (共4题)
14.
如果存在函数
(
为常数),使得对函数
定义域内任意
都有
成立,那么称
为函数
的一个“线性覆盖函数”.给出如下四个结论:
①函数
存在“线性覆盖函数”;
②对于给定的函数
,其“线性覆盖函数”可能不存在,也可能有无数个;
③
为函数
的一个“线性覆盖函数”;
④若
为函数
的一个“线性覆盖函数”,则
其中所有正确结论的序号是___________







①函数

②对于给定的函数

③


④若



其中所有正确结论的序号是___________
3.解答题- (共4题)
16.
已知函数
的图象过点
.
(1)求
的值并求函数
的值域;
(2)若关于
的方程
有实根,求实数
的取值范围;
(3)若函数
,则是否存在实数
,使得函数
的最大值为
?若存在,求出
的值;若不存在,请说明理由.


(1)求


(2)若关于



(3)若函数





18.
已知函数
是定义在
上的奇函数,且当
时,
;
(1)求函数
在
上的解析式并画出函数
的图象(不要求列表描点,只要求画出草图)
(2)(ⅰ)写出函数
的单调递增区间;
(ⅱ)若方程
在
上有两个不同的实数根,求实数
的取值范围。




(1)求函数



(2)(ⅰ)写出函数

(ⅱ)若方程




试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19