1.单选题- (共6题)
3.
股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是( )
A.(1+x)2=![]() | B.(1+x)2=![]() |
C.1+2x=![]() | D.1+2x=![]() |
6.
小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()


A.①② | B.②③ | C.①③ | D.②④ |
2.选择题- (共3题)
3.填空题- (共5题)
13.
如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
.下列结论:①△APD≌△AEB;②点B到直线AE的距离为
;③EB⊥ED;④S△APD+S△APB=1+
;⑤S正方形ABCD=4+
.其中正确结论的序号是 .





4.解答题- (共8题)
16.
已知□ABCD的两边AB、BC的长是关于x的一元二次方程方程
的两个实数根.
(1)试说明:无论m取何值,原方程总有两个实数根;
(2)当m为何值时,□ABCD是菱形?求出这时菱形的边长;
(3)若AB﹦2,求BC的长.

(1)试说明:无论m取何值,原方程总有两个实数根;
(2)当m为何值时,□ABCD是菱形?求出这时菱形的边长;
(3)若AB﹦2,求BC的长.
17.
知识窗:若问题中出现
,
,则
、
可以看成是方程
的两个实数根.根据知识窗完成下列问题:
(1)若
,
,则
、
可以看成是哪个方程的两个实数根;
(2)若
,
,且
,求n的取值范围是;
(3)已知a、b、c满足
,
,求正数c的最小值.





(1)若




(2)若



(3)已知a、b、c满足


20.
某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润为10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.
(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属于第几档次产品?
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?
(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属于第几档次产品?
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?
21.
如图1,在Rt△ABC中,∠C﹦90°,AC﹦6,∠B﹦30°,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,同时动点Q从点C开始沿边CB向点B以每秒
个单位长度的速度运动,当其中一点到达端点时,另一点也随之停止运动.过点P作PD∥BC,交A于点D,连接PQ.设运动时间为t秒(t ≥0).
(1)直接用含t的代数式分别表示QB、PD、BD的长度:QB﹦ ;PD﹦ ;BD﹦ .
(2)当t取何值时,若四边形PDBQ是平行四边形?
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,请说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度;
(4)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.在整个运动过程中,线段PQ的中点M(x,y)会在一个固定的函数图像上运动.则
①该函数解析式为 ;②自变量x的取值范围是 ;③点M所经过的路径长等于 .


(1)直接用含t的代数式分别表示QB、PD、BD的长度:QB﹦ ;PD﹦ ;BD﹦ .
(2)当t取何值时,若四边形PDBQ是平行四边形?
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,请说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度;
(4)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.在整个运动过程中,线段PQ的中点M(x,y)会在一个固定的函数图像上运动.则
①该函数解析式为 ;②自变量x的取值范围是 ;③点M所经过的路径长等于 .

试卷分析
-
【1】题量占比
单选题:(6道)
选择题:(3道)
填空题:(5道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:5
7星难题:0
8星难题:5
9星难题:7