1.单选题- (共10题)
10.
如图,在四边形ABCD中, AD//BC,且AD>BC,BC= 6cm, AD=9cm, P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,多少s时直线将四边形ABCD截出一个平行四边形( )


A.1 | B.2 | C.3 | D.2或3 |
2.选择题- (共4题)
14.小明发现超市里的手扶式电梯无人站在上面时运动较慢,有人站在上面时运动较快.他据此画出了如图所示的电路(R是一个压敏电阻).他分析:当人站在电梯上,R的阻值变小,电磁铁的磁性变{#blank#}1{#/blank#}(选填“强”或“弱”),衔铁与触点{#blank#}2{#/blank#}(选填“1”或“2“)接触,电动机的转速变快,电梯运行变快.
3.填空题- (共2题)
4.解答题- (共12题)
21.
阅读理解并解答:
(1)我们把多项式
及
叫做完全平方式,在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式.同样地,把一个多项式进行部分因式分解可以来解决求代数式值的最大(或最小)值问题.
例如:①
∵
是非负数,即
≥0
∴
+2≥2
则这个代数式
的最小值是_______,这时相应的
的值是_______.
②
=
=
=
=
∵
是非负数,即
≥0
∴
-7≥-7
则这个代数式
的最小值是____,这时相应的
的值是______.
(2)仿照上述方法求代数式
的最大(或最小)值,并写出相应的
的值.
(1)我们把多项式


例如:①

∵


∴

则这个代数式


②

=

=

=

=

∵


∴

则这个代数式


(2)仿照上述方法求代数式


22.
6月1日是儿童节,为了迎接儿童节的到来,兰州某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
(3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利W(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少?
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
(3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利W(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少?
25.
如图,某校准备在校内一块四边形ABCD草坪内栽上一颗银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等,请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹).

26.
如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(4道)
填空题:(2道)
解答题:(12道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:14
7星难题:0
8星难题:3
9星难题:7